Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Neural Eng ; 20(1)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36595316

RESUMO

Objective.Error-related potential (ErrP) is a potential elicited in the brain when humans perceive an error. ErrPs have been researched in a variety of contexts, such as to increase the reliability of brain-computer interfaces (BCIs), increase the naturalness of human-machine interaction systems, teach systems, as well as study clinical conditions. Still, there is a significant challenge in detecting ErrP from a single trial, which may hamper its effective use. The literature presents ErrP detection accuracies quite variable across studies, which raises the question of whether this variability depends more on classification pipelines or on the quality of elicited ErrPs (mostly directly related to the underlying paradigms).Approach.With this purpose, 11 datasets have been used to compare several classification pipelines which were selected according to the studies that reported online performance above 75%. We also analyze the effects of different steps of the pipelines, such as resampling, window selection, augmentation, feature extraction, and classification.Main results.From our analysis, we have found that shrinkage-regularized linear discriminant analysis is the most robust method for classification, and for feature extraction, using Fisher criterion beamformer spatial features and overlapped window averages result in better classification performance. The overall experimental results suggest that classification accuracy is highly dependent on user tasks in BCI experiments and on signal quality (in terms of ErrP morphology, signal-to-noise ratio (SNR), and discrimination).Significance.This study contributes to the BCI research field by responding to the need for a guideline that can direct researchers in designing ErrP-based BCI tasks by accelerating the design steps.


Assuntos
Interfaces Cérebro-Computador , Humanos , Eletroencefalografia/métodos , Reprodutibilidade dos Testes , Encéfalo , Sistemas Homem-Máquina , Algoritmos
2.
J Neural Eng ; 19(6)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541535

RESUMO

Objective.Brain-computer interfaces (BCIs) are emerging as promising cognitive training tools in neurodevelopmental disorders, as they combine the advantages of traditional computerized interventions with real-time tailored feedback. We propose a gamified BCI based on non-volitional neurofeedback for cognitive training, aiming at reaching a neurorehabilitation tool for application in autism spectrum disorders (ASDs).Approach.The BCI consists of an emotional facial expression paradigm controlled by an intelligent agent that makes correct and wrong actions, while the user observes and judges the agent's actions. The agent learns through reinforcement learning (RL) an optimal strategy if the participant generates error-related potentials (ErrPs) upon incorrect agent actions. We hypothesize that this training approach will allow not only the agent to learn but also the BCI user, by participating through implicit error scrutiny in the process of learning through operant conditioning, making it of particular interest for disorders where error monitoring processes are altered/compromised such as in ASD. In this paper, the main goal is to validate the whole methodological BCI approach and assess whether it is feasible enough to move on to clinical experiments. A control group of ten neurotypical participants and one participant with ASD tested the proposed BCI approach.Main results.We achieved an online balanced-accuracy in ErrPs detection of 81.6% and 77.1%, respectively for two different game modes. Additionally, all participants achieved an optimal RL strategy for the agent at least in one of the test sessions.Significance.The ErrP classification results and the possibility of successfully achieving an optimal learning strategy, show the feasibility of the proposed methodology, which allows to move towards clinical experimentation with ASD participants to assess the effectiveness of the approach as hypothesized.


Assuntos
Transtorno do Espectro Autista , Interfaces Cérebro-Computador , Humanos , Eletroencefalografia/métodos , Aprendizagem , Reforço Psicológico
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5609-5612, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947127

RESUMO

Emotions potentially have a significant impact on human actions and recognizing affective states is an effective way of implementing Brain-Computer Interface (BCI) systems which process brain signals to allow direct communication and interaction with the environment. In this paper, a real-time emotion recognition model was developed on the basis of physiological signals. A sensor fusion method is developed to detect human emotion by using data acquired from ElectroEncephaloGraphy (EEG) and ElectroDermal Activity (EDA) sensors. The proposed physiology-based emotion recognition system using a neural network was implemented and tested on human subjects, and a classification accuracy of 94% on three different emotions was achieved.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Emoções , Eletroencefalografia , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA