Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Dis ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017585

RESUMO

Wheat (Triticum aestivum) is an important crop worldwide, contributing to about one third of the global caloric intake. In June 2021, leaves with bacterial blight symptoms, including yellow and necrotic lesions running parallel to veins, were found in several fields across five counties in eastern Colorado (Weld, Morgan, Sedgwick, Baca, and Kit Carson). Plants exhibiting these symptoms were scattered throughout fields, but symptoms appeared consistent across counties. To determine the causal agent and complete Koch's postulates, a 1 cm2 symptomatic leaf area was excised and macerated in 0.5 mL of sterilized water from four field samples. The lysate was spread on yeast extract dextrose calcium carbonate medium (YDC agar, 1% yeast extract, 2% dextrose, 2% calcium carbonate, 1.5% agar) to isolate bacteria. Single colonies of yellow, mucoid morphology were selected and streaked on new YDC plates. Isolate genomic DNA was extracted (Zymo Research Quick-DNA Fungal/Bacterial Miniprep Kit, #D6005), and ~30 ng of gDNA was used to amplify the 16S rRNA, gyrB, and rpoB genes of all four isolates (Barret et al., 2015; Delétoile et al., 2009; Krawczyk et al., 2020; Ogier et al., 2019). Amplified PCR products were cleaned (Zymo DNA Clean & Concentrator kit, #D4033) and Sanger sequenced, and all sequences have been deposited in NCBI (16S rRNA: OR707336, OR707337, OR707338, OR707339), (gyrB: PP407951, PP407952, PP407953, PP407954), (rpoB: PP407955, PP407956, PP407957, PP407958). A BLAST search against whole genomes identified one isolate from Kit Carson county (CO314) and two isolates from Baca county (CO316 and CO317) as Pantoea agglomerans with 100% identity for the 16S rRNA, gyrB, and rpoB genes, and one isolate from Weld county (CO315) was 100% identical to Pantoea allii for all three genes. To complete Koch's postulates and confirm Pantoea sp. as the causal disease agents, isolates were grown as lawns on DifcoTM Nutrient Agar (NA) medium (48h, 28℃), suspended in 10 mM MgCl2 using a final optical density of 0.1 (~109 colony forming units per milliliter (CFU/mL)), and syringe-infiltrated into the entire leaf area of 10-day-old wheat seedling leaves (var. Hatcher). Treatments of 10mM MgCl2 and a field isolate that does not cause symptoms, identified as Pseudomonas synxantha by 16S rRNA and gyrB sequencing, were negative controls. Inoculated wheat plants were transferred to a growth chamber (22℃, 90% relative humidity). Symptoms developed 14 days post inoculation (dpi), with the most severe appearing 21 dpi. Each of the four Pantoea isolates were re-isolated from symptomatic leaves by grinding them in a Tissue Lyser II (Qiagen) with two metal beads and diluting with 0.4 mL of sterile water. A 20 µL sample of each isolate was plated on NA (24h, 28℃). The colonies appeared phenotypically identical to the original isolates, and Sanger sequencing confirmed the identities of the isolates. To our knowledge, this is the first report of P. agglomerans causing disease in wheat in the United States, and the first report of P. allii as a wheat disease-causing agent. This report is consistent with previous communications showing P. agglomerans causing wheat disease in China (Gao et al., 2023), and P. ananatis in Poland (Krawczyk et al., 2020). The growing numbers of reports of Pantoea spp. as pathogens in recent years suggests increasing novel disease emergence on cereals worldwide.

2.
Phytopathology ; 109(4): 509-511, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30565503

RESUMO

This is a response to a recent Letter to the Editor of Phytopathology, in which Gupta et al. (2019) caution against the indiscriminate use of the MoT3 diagnostic assay that distinguishes isolates of Magnaporthe oryzae in the Triticum lineage from those that do not cause aggressive wheat blast. We confirm that the assay does reliably distinguish between wheat and rice isolates from Bangladesh and worldwide, as described in the original paper by Pieck et al. (2017) . We have been unable to reproduce the equally intense amplification of WB12 and WB12-like sequences reported in Figure 1 of the Letter. Other data presented by Gupta et al. (2019) support the specificity of the MoT3 assay. Therefore, cautions beyond those always associated with accurate reproduction of diagnostic assays are unwarranted.

3.
Plant Dis ; 102(12): 2550-2559, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30320534

RESUMO

Wheat blast, caused by the Magnaporthe oryzae Triticum pathotype, is an economically important fungal disease of wheat. Wheat blast symptoms are similar to Fusarium head scab and can cause confusion in the field. Currently, no in-field diagnostic exists for M. oryzae Triticum. Loop-mediated isothermal amplification (LAMP) primers were designed to target the PoT2 and MoT3 loci, previously shown to be specific for M. oryzae and M. oryzae Triticum, respectively. Specificity was determined using 158 M. oryzae strains collected from infected wheat and other grasses and representing geographic and temporal variation. Negative controls included 50 Fusarium spp. isolates. Sensitivity was assessed using 10-fold serial dilutions of M. oryzae Triticum gDNA. PoT2- and MoT3-based assays showed high specificity for M. oryzae and M. oryzae Triticum, respectively, and sensitivity to approximately 5 pg of DNA per reaction. PoT2 and MoT3 assays were tested on M. oryzae Triticum-infected wheat seed and spikes and identified M. oryzae and M. oryzae Triticum, respectively, using a field DNA extraction kit and the portable Genie II system. The mitochondrial NADH-dehydrogenase (nad5) gene, an internal control for plant DNA, was multiplexed with PoT2 and MoT3 and showed results comparable with individual assays. These results show applicability for M. oryzae Triticum field surveillance, as well as identifying nonwheat species that may serve as a reservoir or source of inoculum for nearby wheat fields.


Assuntos
Magnaporthe/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Doenças das Plantas/microbiologia , Triticum/microbiologia , Primers do DNA/genética , DNA Fúngico/genética , DNA Mitocondrial/genética , DNA de Plantas/genética , Flores/microbiologia , Fusarium/genética , Fusarium/isolamento & purificação , Loci Gênicos , Magnaporthe/genética , Sementes/microbiologia , Sensibilidade e Especificidade , Especificidade da Espécie
4.
Phytopathology ; 107(11): 1339-1345, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28697662

RESUMO

Dickeya and Pectobacterium spp. are responsible for soft-rotting diseases of several plant species, some with overlapping host range. On potato, symptoms caused by these pathogens cannot be clearly differentiated. Disease results in the downgrading and rejection of potato seed, thus requiring additional phytosanitary restrictions across Northern Europe and other parts of the world. In an effort to provide a more timely and accurate diagnostic to distinguish these two groups of pathogens, a method for detecting Dickeya spp. using loop-mediated isothermal amplification (LAMP) was developed. The LAMP assay can be used to test crude extracts prepared directly from symptomatic lesions. The entire test can be completed in less than 30 min, making it faster than the current diagnostic standard, the pelADE conventional polymerase chain reaction. Additionally, the LAMP assay was able to detect Dickeya DNA in samples spiked with varying amounts of Pectobacterium DNA, thus demonstrating the highly specific and sensitive nature of the assay, which can be applied on survey samples with mixed soft-rotting bacterial populations.


Assuntos
DNA Bacteriano/genética , Gammaproteobacteria/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Filogenia , Sensibilidade e Especificidade
5.
Phytopathology ; 106(3): 226-35, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26595113

RESUMO

The Goss's wilt pathogen, Clavibacter michiganensis subsp. nebraskensis, can cause considerable losses in maize (Zea mays) production. Diagnosis of Goss's wilt currently is based on symptomology and identification of C. michiganensis subsp. nebraskensis, following isolation on a semiselective medium and/or serological testing. In an effort to provide a more efficient identification method, a loop-mediated amplification (LAMP) assay was developed to detect the tripartite ATP-independent periplasmic (TRAP)-type C4-dicarboxylate transport system large permease component and tested using strains of C. michiganensis subsp. nebraskensis, all other C. michiganensis subspecies and several genera of nontarget bacteria. Only strains of C. michiganensis subsp. nebraskensis reacted positively with the LAMP assay. The LAMP assay was then used to identify bacterial isolates from diseased maize. 16S rDNA and dnaA sequence analyses were used to confirm the identity of the maize isolates and validate assay specificity. The Cmm ImmunoStrip assay was included as a presumptive identification test of C. michiganensis subsp. nebraskensis at the species level. The Cmn-LAMP assay was further tested using symptomatic leaf tissue. The Cmn-LAMP assay was run in a hand-held real-time monitoring device (SMART-DART) and performed equally to in-lab quantitative polymerase chain reaction equipment. The Cmn-LAMP assay accurately identified C. michiganensis subsp. nebraskensis and has potential as a field test. The targeted sequence also has potential application in other molecular detection platforms.


Assuntos
Actinobacteria/genética , Actinobacteria/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Filogenia
6.
Int J Syst Evol Microbiol ; 65(Pt 3): 811-826, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25481293

RESUMO

The genus Clavibacter contains one recognized species, Clavibacter michiganensis. Clavibacter michiganensis is subdivided into subspecies based on host specificity and bacteriological characteristics, with Clavibacter michiganensis subsp. michiganensis causing bacterial canker of tomato. Clavibacter michiganensis subsp. michiganensis is often spread through contaminated seed leading to outbreaks of bacterial canker in tomato production areas worldwide. The frequent occurrence of non-pathogenic Clavibacter michiganensis subsp. michiganensis-like bacteria (CMB) is a concern for seed producers because Clavibacter michiganensis subsp. michiganensis is a quarantine organism and detection of a non-pathogenic variant may result in destruction of an otherwise healthy seed lot. A thorough biological and genetic characterization of these seed-associated CMB strains was performed using standard biochemical tests, cell wall analyses, metabolic profiling using Biolog, and single-gene and multilocus sequence analyses. Combined, these tests revealed two distinct populations of seed-associated members of the genus Clavibacter that differed from each other, as well as from all other described subspecies of Clavibacter michiganensis. DNA-DNA hybridization values are 70 % or higher, justifying placement into the single recognized species, C. michiganensis, but other analyses justify separate subspecies designations. Additionally, strains belonging to the genus Clavibacter isolated from pepper also represent a distinct population and warrant separate subspecies designation. On the basis of these data we propose subspecies designations for separate non-pathogenic subpopulations of Clavibacter michiganensis: Clavibacter michiganensis subsp. californiensis subsp. nov. and Clavibacter michiganensis subsp. chilensis subsp. nov. for seed-associated strains represented by C55(T) ( = ATCC BAA-2691(T) = CFBP 8216(T)) and ZUM3936(T) ( = ATCC BAA-2690(T) = CFBP 8217(T)), respectively. Recognition of separate subspecies is essential for improved international seed testing operations.


Assuntos
Actinobacteria/classificação , Filogenia , Sementes/microbiologia , Solanum lycopersicum/microbiologia , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Capsicum/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Metaboloma , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Phytopathology ; 103(12): 1220-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23802869

RESUMO

Loop-mediated amplification (LAMP) was used to specifically identify Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial canker of tomato. LAMP primers were developed to detect micA, a chromosomally stable gene that encodes a type II lantibiotic, michiganin A, which inhibits growth of other C. michiganensis subspecies. In all, 409 bacterial strains (351 C. michiganensis subsp. michiganensis and 58 non-C. michiganensis subsp. michiganensis) from a worldwide collection were tested with LAMP to determine its specificity. LAMP results were compared with genetic profiles established using polymerase chain reaction (PCR) amplification of seven genes (dnaA, ppaJ, pat-1, chpC, tomA, ppaA, and ppaC). C. michiganensis subsp. michiganensis strains produced eight distinct profiles. The LAMP reaction identified all C. michiganensis subsp. michiganensis strains and discriminated them from other C. michiganensis subspecies and non-Clavibacter bacteria. LAMP has advantages over immunodiagnostic and other molecular detection methods because of its specificity and isothermal nature, which allows for easy field application. The LAMP reaction is also not affected by as many inhibitors as PCR. This diagnostic tool has potential to provide an easy, one-step test for rapid identification of C. michiganensis subsp. michiganensis.


Assuntos
Genes Bacterianos/genética , Micrococcaceae/isolamento & purificação , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , Solanum lycopersicum/microbiologia , Sequência de Bases , Primers do DNA/genética , DNA Bacteriano/genética , Micrococcaceae/classificação , Micrococcaceae/genética , Micrococcaceae/patogenicidade , Dados de Sequência Molecular , Filogenia , Sensibilidade e Especificidade , Análise de Sequência de DNA , Especificidade da Espécie
8.
Front Bioeng Biotechnol ; 10: 877603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402391

RESUMO

The global pandemic caused by the SARS-CoV-2 virus has underscored the need for rapid, simple, scalable, and high-throughput multiplex diagnostics in non-laboratory settings. Here we demonstrate a multiplex reverse-transcription loop-mediated isothermal amplification (RT-LAMP) coupled with a gold nanoparticle-based lateral flow immunoassay (LFIA) capable of detecting up to three unique viral gene targets in 15 min. RT-LAMP primers associated with three separate gene targets from the SARS-CoV-2 virus (Orf1ab, Envelope, and Nucleocapsid) were added to a one-pot mix. A colorimetric change from red to yellow occurs in the presence of a positive sample. Positive samples are run through a LFIA to achieve specificity on a multiplex three-test line paper assay. Positive results are indicated by a characteristic crimson line. The device is almost fully automated and is deployable in any community setting with a power source.

9.
Virol J ; 7: 182, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20691099

RESUMO

Viral-induced infectious diseases represent a major health threat and their control remains an unachieved goal, due in part to the limited availability of effective anti-viral drugs and measures. The use of natural products in drug manufacturing is an ancient and well-established practice. Marine organisms are known producers of pharmacological and anti-viral agents. In this study, a total of 20 extracts from marine microorganisms were evaluated for their antiviral activity. These extracts were tested against two mammalian viruses, herpes simplex virus (HSV-1) and vesicular stomatitis virus (VSV), using Vero cells as the cell culture system, and two marine virus counterparts, channel catfish virus (CCV) and snakehead rhabdovirus (SHRV), in their respective cell cultures (CCO and EPC). Evaluation of these extracts demonstrated that some possess antiviral potential. In sum, extracts 162M(4), 258M(1), 298M(4), 313(2), 331M(2), 367M(1) and 397(1) appear to be effective broad-spectrum antivirals with potential uses as prophylactic agents to prevent infection, as evident by their highly inhibitive effects against both virus types. Extract 313(2) shows the most potential in that it showed significantly high inhibition across all tested viruses. The samples tested in this study were crude extracts; therefore the development of antiviral application of the few potential extracts is dependent on future studies focused on the isolation of the active elements contained in these extracts.


Assuntos
Antivirais/farmacologia , Bactérias/química , Diatomáceas/química , Água do Mar/microbiologia , Vírus/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Bactérias/isolamento & purificação , Linhagem Celular , Diatomáceas/isolamento & purificação , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Ictalurivirus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Novirhabdovirus/efeitos dos fármacos , Vesiculovirus/efeitos dos fármacos
10.
Microorganisms ; 8(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150860

RESUMO

Rathayibacter toxicus is a Gram-positive, nematode-vectored bacterium that infects several grass species in the family Poaceae. Unique in its genus, R. toxicus has the smallest genome, possesses a complete CRISPR-Cas system, a vancomycin-resistance cassette, produces tunicamycin, a corynetoxin responsible for livestock deaths in Australia, and is designated a Select Agent in the United States. In-depth, genome-wide analyses performed in this study support the previously designated five genetic populations, with a core genome comprising approximately 80% of the genome for all populations. Results varied as a function of the type of analysis and when using different bioinformatics tools for the same analysis; e.g., some programs failed to identify specific genomic regions that were actually present. The software variance highlights the need to verify bioinformatics results by additional methods; e.g., PCR, mapping genes to genomes, use of multiple algorithms). These analyses suggest the following relationships among populations: RT-IV ↔ RT-I ↔ RT-II ↔ RT-III ↔ RT-V, with RT-IV and RT-V being the most unrelated. This is the most comprehensive analysis of R. toxicus that included populations RT-I and RT-V. Future studies require underrepresented populations and more recent isolates from varied hosts and geographic locations.

11.
Mol Plant Pathol ; 17(9): 1499-1505, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26833881

RESUMO

Potatoes are an important agroeconomic crop worldwide and maceration diseases caused by pectolytic bacterial pathogens result in significant pre- and post-harvest losses. Pectobacterium carotovorum shares a common host range with other Pectobacterium spp. and other members of the Enterobacteriaceae, such as Dickeya spp. As these pathogens cannot be clearly differentiated on the basis of the symptoms they cause, improved methods of identification are critical for the determination of sources of contamination. Current standardized methods for the differentiation of pectolytic species are time consuming and require trained personnel, as they rely on traditional bacteriological practices that do not always produce conclusive results. In this growing world market, there is a need for rapid diagnostic tests that can differentiate between pectolytic pathogens, as well as separate them from non-pectolytic enteric bacteria associated with soft rots of potato. An assay has been designed previously to detect the temperate pathogen Pectobacterium atrosepticum, but there is currently no recognized rapid assay for the detection of the tropical/subtropical counterpart, Pectobacterium carotovorum. This report describes the development of a loop-mediated isothermal amplification (LAMP) assay that detects P. carotovorum with high specificity. The assay was evaluated using all known species of Pectobacterium and only showed positive reactions for P. carotovorum. This assay was also tested against 15 non-target genera of plant-associated bacteria and did not produce any false positives. The LAMP assay described here can be used as a rapid test for the differentiation of P. carotovorum from other pectolytic pathogens, and its gene target can be the basis for the development of other molecular-based detection assays.


Assuntos
Pectobacterium carotovorum/genética , Pectobacterium carotovorum/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Primers do DNA/metabolismo , Nefelometria e Turbidimetria , Solanum tuberosum/microbiologia
12.
Antiviral Res ; 86(3): 231-40, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20338196

RESUMO

Available treatments for many infectious diseases are limited. In particular, diseases caused by viral pathogens have demonstrated the need for new medicines, due to the increasing appearance of resistance to these available treatments. Thousands of novel compounds have been isolated from various marine organisms and tested for pharmacological properties, many of which are commercially available. The screening of natural products derived from marine species for antiviral activity has yielded a considerable number of active crude aqueous and organic solvent extracts. Today, over 40 compounds are commercially available in pharmacological markets, including alternative antiviral medicines or those being tested as potential antiviral drugs. Many more are being tested as potential antiviral drugs at the preclinical and clinical stages. The growing interest in marine-derived antiviral compounds, along with the development of new technology in marine cultures and extraction, will significantly expedite the current exploration of the marine environment for compounds with significant pharmacological applications, which will continue to be a promising strategy and new trend for modern medicine.


Assuntos
Antivirais/isolamento & purificação , Antivirais/farmacologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Poríferos/química , Água do Mar/microbiologia , Animais , Bactérias/química , Eucariotos/química , Fungos/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA