Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(11): 5139-5152, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38446791

RESUMO

Plasma has been proposed as an alternative strategy to treat organic contaminants in brines. Chemical degradation in these systems is expected to be partially driven by halogen oxidants, which have been detected in halide-containing solutions exposed to plasma. In this study, we characterized specific mechanisms involving the formation and reactions of halogen oxidants during plasma treatment. We first demonstrated that addition of halides accelerated the degradation of a probe compound known to react quickly with halogen oxidants (i.e., para-hydroxybenzoate) but did not affect the degradation of a less reactive probe compound (i.e., benzoate). This effect was attributed to the degradation of para-hydroxybenzoate by hypohalous acids, which were produced via a mechanism involving halogen radicals as intermediates. We applied this mechanistic insight to investigate the impact of constituents in brines on reactions driven by halogen oxidants during plasma treatment. Bromide, which is expected to occur alongside chloride in brines, was required to enable halogen oxidant formation, consistent with the generation of halogen radicals from the oxidation of halides by hydroxyl radical. Other constituents typically present in brines (i.e., carbonates, organic matter) slowed the degradation of organic compounds, consistent with their ability to scavenge species involved during plasma treatment.


Assuntos
Oxidantes , Sais , Poluentes Químicos da Água , Compostos Orgânicos , Radical Hidroxila/química , Oxirredução , Halogênios/química , Hidroxibenzoatos , Poluentes Químicos da Água/química
2.
Phys Chem Chem Phys ; 24(23): 14257-14268, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35662297

RESUMO

Nonthermal plasmas in contact with liquids have been shown to generate a variety of reactive species capable of initiating reduction-oxidation (redox) reactions at the electrochemically active plasma-liquid interface. In conventional electrochemical cells, selective redox chemistry is achieved by controlling the reduction potential at the solid electrode-electrolyte interface by applying a bias via an external circuit. In the case of plasma-liquid systems, an analogous means of tuning the reduction potential near the interface has not clearly been identified. When treated as a floating surface, the liquid is expected to adopt a net negative charge to balance the flux of hot electrons and relatively cold positive ions. The reduction potential near the plasma-liquid interface is hypothesized to be proportional to the floating potential, which can be approximated using an analytical model provided the plasma parameters are known. Herein, we present a framework for correlating the electron density and electron temperature of a noble gas plasma jet to the reduction potential near the plasma-liquid interface. The plasma parameters were acquired for an argon atmospheric plasma jet in contact with an aqueous solution by means of laser Thomson scattering. The reduction potential was determined using identical reference electrodes to measure the potential difference between the plasma-liquid interface and bulk solution. Interestingly, the measured reduction potentials near the plasma-liquid interface were found to be in good agreement with the model-predicted values determined using the plasma parameters obtained from the Thomson scattering experiments.

3.
Phys Chem Chem Phys ; 22(36): 20837-20850, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32914821

RESUMO

In this work, solid targets made from boron and boron nitride (BN) materials are ablated by a nanosecond pulsed laser at sub-atmospheric pressures of nitrogen and helium gases. The excited species in the ablation plume from the target are probed by spatiotemporally resolved optical emission spectroscopy (OES). The evaluation of the chemical composition of the plasma plume revealed that for both boron-rich targets, emission from BN molecules is always observed in nitrogen-rich environments. In addition, BN molecules are also present when ablating a boron nitride target in a helium gas environment, an indication that BN molecules in the plume may originate from the solid target. Furthermore, the ablation of the BN target features emission of B2N molecules, regardless of the pressure and surrounding gas. These results suggest that the ablation of the BN target is more favorable for the generation of complex molecules containing boron and nitrogen species and possibly hint that BN is also more favorable feedstock for high-yield BN nanomaterial synthesis. Plasma parameters such as the electron temperature (peak value of 1.3 eV) and density (peak value of 2 × 1018 cm-3) were also investigated in this work in order to discuss the chemical dynamics in the plume.

4.
Phys Chem Chem Phys ; 21(24): 13268-13286, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31183487

RESUMO

High-yield production of high-quality boron-nitride nanotubes (BNNTs) has been reported recently in several publications. A boron-rich material is evaporated using a laser or plasma in a nitrogen-rich atmosphere to supply precursor gaseous species for nucleation and growth of BNNTs. Either hydrogen was added or pressure was increased in the system to achieve high yield and high purity of the synthesized nanotubes. According to the widely-accepted "root grow" mechanism, upon gas cooling, boron droplets form first, then they adsorb nitrogen from the surrounding gas species, and BNNTs grow on their surfaces. However, what are the precursor species that provide nitrogen for the growth is still an open question. To answer this question, we performed thermodynamic calculations for determining the B-N mixture composition considering a broad set of gas species. For the first time, condensation of boron was taken into account and was shown to have a drastic effect on thegas chemical composition. B2N molecules were identified to be a major source of nitrogen for the growth of BNNTs. The presence of B2N molecules in a B-N gas mixture was verified by our spectroscopic measurements during laser ablation of boron-rich targets in nitrogen. It was shown that the increase of pressure has a quantitative effect on the mixture composition yielding an increase of the precursor density. Hydrogen addition might open an additional channel of nitrogen supply to support the growth of BNNTs. The nitrogen atoms react with abundant H2 molecules to form NH2 and then NH3 precursor species, instead of just recombining back to inert N2 molecules, as in the no-hydrogen case. In addition, thermodynamics was applied in conjunction with agglomeration theory to predict the size of the boron droplets upon growth of BNNTs. Analytical relations for the identification of crucial species densities were derived.

5.
Sci Rep ; 11(1): 4626, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633257

RESUMO

There is an urgent need for disinfection and sterilization devices accessible to the public that can be fulfilled by innovative strategies for using cold atmospheric pressure plasmas. Here, we demonstrate a successful novel combination of a flexible printed circuit design of a dielectric barrier discharge (flex-DBD) with an environmentally safe chemical reagent for surface decontamination from bacterial contaminants. Flex-DBD operates in ambient air, atmospheric pressure, and room temperature without any additional gas flow at a power density not exceeding 0.5 W/cm2. The flex-DBD activation of a 3% hydrogen peroxide solution results in the reduction in the bacterial load of a surface contaminant of > 6log10 in 90 s, about 3log10 and 2log10 better than hydrogen peroxide alone or the flex-DBD alone, respectively, for the same treatment time. We propose that the synergy between plasma and hydrogen peroxide is based on the combined action of plasma-generated OH· radicals in the hydrogen peroxide solution and the reactive nitrogen species supplied by the plasma effluent. A scavenger method verified a significant increase in OH· concentration due to plasma treatment. Novel in-situ FTIR absorption spectra show the presence of O3, NO2, N2O, and other nitrogen species. Ozone dissolving in the H2O2 solution can effectively generate OH· through a peroxone process. The addition of the reactive nitrogen species increases the disinfection efficiency of the hydroxyl radicals and other oxygen species. Hence, plasma activation of a low concentration hydrogen peroxide solution, using a hand-held flexible DBD device results in a dramatic improvement in disinfection.


Assuntos
Desinfetantes/química , Peróxido de Hidrogênio/química , Escherichia coli/efeitos dos fármacos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA