Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 131(20)2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30254025

RESUMO

The specific organization of the neuronal microtubule cytoskeleton in axons and dendrites is an evolutionarily conserved determinant of neuronal polarity that allows for selective cargo sorting. However, how dendritic microtubules are organized and whether local differences influence cargo transport remains largely unknown. Here, we use live-cell imaging to systematically probe the microtubule organization in Caenorhabditiselegans neurons, and demonstrate the contribution of distinct mechanisms in the organization of dendritic microtubules. We found that most non-ciliated neurons depend on unc-116 (kinesin-1), unc-33 (CRMP) and unc-44 (ankyrin) for correct microtubule organization and polarized cargo transport, as previously reported. Ciliated neurons and the URX neuron, however, use an additional pathway to nucleate microtubules at the tip of the dendrite, from the base of the cilium in ciliated neurons. Since inhibition of distal microtubule nucleation affects distal dendritic transport, we propose a model in which the presence of a microtubule-organizing center at the dendrite tip ensures correct dendritic cargo transport.


Assuntos
Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , Microtúbulos/metabolismo , Transporte Proteico/fisiologia , Animais , Células Cultivadas
2.
J Neurosci ; 36(4): 1071-85, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26818498

RESUMO

In cultured vertebrate neurons, axons have a uniform arrangement of microtubules with plus-ends distal to the cell body (plus-end-out), whereas dendrites contain mixed polarity orientations with both plus-end-out and minus-end-out oriented microtubules. Rather than non-uniform microtubules, uniparallel minus-end-out microtubules are the signature of dendrites in Drosophila and Caenorhabditis elegans neurons. To determine whether mixed microtubule organization is a conserved feature of vertebrate dendrites, we used live-cell imaging to systematically analyze microtubule plus-end orientations in primary cultures of rat hippocampal and cortical neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neurons in the somatosensory cortex of living mice. In vitro and in vivo, all microtubules had a plus-end-out orientation in axons, whereas microtubules in dendrites had mixed orientations. When dendritic microtubules were severed by laser-based microsurgery, we detected equal numbers of plus- and minus-end-out microtubule orientations throughout the dendritic processes. In dendrites, the minus-end-out microtubules were generally more stable and comparable with plus-end-out microtubules in axons. Interestingly, at early stages of neuronal development in nonpolarized cells, newly formed neurites already contained microtubules of opposite polarity, suggesting that the establishment of uniform plus-end-out microtubules occurs during axon formation. We propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. SIGNIFICANCE STATEMENT: Live-cell imaging was used to systematically analyze microtubule organization in primary cultures of rat hippocampal neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neuron in somatosensory cortex of living mice. In vitro and in vivo, all microtubules have a plus-end-out orientation in axons, whereas microtubules in dendrites have mixed orientations. Interestingly, newly formed neurites of nonpolarized neurons already contain mixed microtubules, and the specific organization of uniform plus-end-out microtubules only occurs during axon formation. Based on these findings, the authors propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization.


Assuntos
Axônios/fisiologia , Polaridade Celular/fisiologia , Microtúbulos/fisiologia , Neurônios/citologia , Animais , Células Cultivadas , Centríolos/fisiologia , Córtex Cerebral/citologia , Dendritos/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Fatores de Tempo , Tubulina (Proteína)/metabolismo
3.
J Neurosci ; 31(22): 8194-209, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21632941

RESUMO

Dynamic microtubules are important to maintain neuronal morphology and function, but whether neuronal activity affects the organization of dynamic microtubules is unknown. Here, we show that a protocol to induce NMDA-dependent long-term depression (LTD) rapidly attenuates microtubule dynamics in primary rat hippocampal neurons, removing the microtubule-binding protein EB3 from the growing microtubule plus-ends in dendrites. This effect requires the entry of calcium and is mediated by activation of NR2B-containing NMDA-type glutamate receptor. The rapid NMDA effect is followed by a second, more prolonged response, during which EB3 accumulates along MAP2-positive microtubule bundles in the dendritic shaft. MAP2 is both required and sufficient for this activity-dependent redistribution of EB3. Importantly, NMDA receptor activation suppresses microtubule entry in dendritic spines, whereas overexpression of EB3-GFP prevents NMDA-induced spine shrinkage. These results suggest that short-lasting and long-lasting changes in dendritic microtubule dynamics are important determinants for NMDA-induced LTD.


Assuntos
Espinhas Dendríticas/metabolismo , Hipocampo/fisiologia , Microtúbulos/fisiologia , Neurônios/citologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Cálcio/metabolismo , Técnicas de Cultura de Células , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Receptores de N-Metil-D-Aspartato/agonistas
4.
Dev Cell ; 28(3): 295-309, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24486153

RESUMO

Microtubules are cytoskeletal polymers with two structurally and functionally distinct ends, the plus- and the minus-end. Here, we focus on the mechanisms underlying the regulation of microtubule minus-ends by the CAMSAP/Nezha/Patronin protein family. We show that CAMSAP2 is required for the proper organization and stabilization of interphase microtubules and directional cell migration. By combining live-cell imaging and in vitro reconstitution of microtubule assembly from purified components with laser microsurgery, we demonstrate that CAMSAPs regulate microtubule minus-end growth and are specifically deposited on the lattice formed by microtubule minus-end polymerization. This process leads to the formation of CAMSAP-decorated microtubule stretches, which are stabilized from both ends and serve as sites of noncentrosomal microtubule outgrowth. The length of the stretches is regulated by the microtubule-severing protein katanin, which interacts with CAMSAPs. Our data thus indicate that microtubule minus-end assembly drives the stabilization of noncentrosomal microtubules and that katanin regulates this process.


Assuntos
Centrossomo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Katanina , Camundongos
5.
Neuron ; 82(5): 1058-73, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24908486

RESUMO

In neurons, most microtubules are not associated with a central microtubule-organizing center (MTOC), and therefore, both the minus and plus-ends of these non-centrosomal microtubules are found throughout the cell. Microtubule plus-ends are well established as dynamic regulatory sites in numerous processes, but the role of microtubule minus-ends has remained poorly understood. Using live-cell imaging, high-resolution microscopy, and laser-based microsurgery techniques, we show that the CAMSAP/Nezha/Patronin family protein CAMSAP2 specifically localizes to non-centrosomal microtubule minus-ends and is required for proper microtubule organization in neurons. CAMSAP2 stabilizes non-centrosomal microtubules and is required for neuronal polarity, axon specification, and dendritic branch formation in vitro and in vivo. Furthermore, we found that non-centrosomal microtubules in dendrites are largely generated by γ-Tubulin-dependent nucleation. We propose a two-step model in which γ-Tubulin initiates the formation of non-centrosomal microtubules and CAMSAP2 stabilizes the free microtubule minus-ends in order to control neuronal polarity and development.


Assuntos
Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dendritos/metabolismo , Microtúbulos/metabolismo , Células Piramidais/metabolismo , Animais , Axônios/ultraestrutura , Dendritos/ultraestrutura , Hipocampo/embriologia , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Humanos , Proteínas Associadas aos Microtúbulos , Microtúbulos/ultraestrutura , Células Piramidais/ultraestrutura , Ratos
6.
Methods Cell Biol ; 97: 111-32, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20719268

RESUMO

Neuronal microtubules recently emerged as temporal and spatial regulators of dendritic spines, the major sites of excitatory synaptic input. By imaging microtubules in cultured mature primary hippocampal neurons using fluorescently tagged tubulin and microtubule plus-end binding (EB) protein EB3, dynamic microtubules were found to regularly depart from the dendritic shaft and enter dendritic spines. Evidence indicates that microtubule invasions into spines regulate spine actin dynamics and induce transient morphological changes, such as the formation of spine head protrusion and spine growth. Because alterations in spine morphology play an important role in synaptic plasticity and have been linked to learning and memory formation, it is possible that dynamic microtubules are engaged in adaptive processes in the adult brain. This chapter provides detailed methods for live imaging of dynamic microtubules in mature hippocampal neurons in culture. We describe protocols for culturing and transfecting mature hippocampal neurons and visualizing microtubules and microtubule plus-EB proteins by total internal reflection fluorescence microscopy and spinning disk confocal microscopy.


Assuntos
Espinhas Dendríticas/metabolismo , Microtúbulos/metabolismo , Adulto , Animais , Técnicas de Cultura de Células , Espinhas Dendríticas/fisiologia , Humanos , Cinética , Microscopia de Fluorescência/métodos , Microtúbulos/fisiologia , Modelos Biológicos , Neurônios/citologia , Multimerização Proteica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA