Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Immunol ; 16(5): 505-16, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25751747

RESUMO

A cytosolic role for the histone methyltransferase Ezh2 in regulating lymphocyte activation has been suggested, but the molecular mechanisms underpinning this extranuclear function have remained unclear. Here we found that Ezh2 regulated the integrin signaling and adhesion dynamics of neutrophils and dendritic cells (DCs). Ezh2 deficiency impaired the integrin-dependent transendothelial migration of innate leukocytes and restricted disease progression in an animal model of multiple sclerosis. Direct methylation of talin, a key regulatory molecule in cell migration, by Ezh2 disrupted the binding of talin to F-actin and thereby promoted the turnover of adhesion structures. This regulatory effect was abolished by targeted disruption of the interactions of Ezh2 with the cytoskeletal-reorganization effector Vav1. Our studies reveal an unforeseen extranuclear function for Ezh2 in regulating adhesion dynamics, with implications for leukocyte migration, immune responses and potentially pathogenic processes.


Assuntos
Núcleo Celular/metabolismo , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Neutrófilos/imunologia , Complexo Repressor Polycomb 2/metabolismo , Talina/metabolismo , Actinas/metabolismo , Animais , Adesão Celular/genética , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Ativação Linfocitária/genética , Metilação , Camundongos , Camundongos Knockout , Complexo Repressor Polycomb 2/genética , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Talina/genética , Migração Transendotelial e Transepitelial/genética
2.
Biochem Biophys Res Commun ; 513(3): 714-720, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987826

RESUMO

Pellino1 is an E3 ubiquitin ligase that plays a key role in positive regulation of innate immunity signaling, specifically required for the production of interferon when induced by viral double-stranded RNA. We report the identification of the tumor suppressor protein, p53, as a binding partner of Pellino1. Their interaction has a Kd of 42 ±â€¯2 µM and requires phosphorylation of Thr18 within p53 and association with the forkhead-associated (FHA) domain of Pellino1. We employed laser micro-irradiation and live cell microscopy to show that Pellino1 is recruited to newly occurring DNA damage sites, via its FHA domain. Mutation of a hitherto unidentified nuclear localization signal within the N-terminus of Pellino1 led to its exclusion from the nucleus. This study provides evidence that Pellino1 translocates to damaged DNA in the nucleus and has a functional role in p53 signaling and the DNA damage response.


Assuntos
Dano ao DNA , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Modelos Moleculares , Proteínas Nucleares/análise , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Supressora de Tumor p53/análise , Ubiquitina-Proteína Ligases/análise
3.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1525-1536, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28641978

RESUMO

Angiopoietin-like 4 (ANGPTL4) is a secretory protein that can be cleaved to form an N-terminal and a C-terminal protein. Studies performed thus far have linked ANGPTL4 to several cancer-related and metabolic processes. Notably, several point mutations in the C-terminal ANGPTL4 (cANGPTL4) have been reported, although no studies have been performed that ascribed these mutations to cancer-related and metabolic processes. In this study, we compared the characteristics of tumors with and without wild-type (wt) cANGPTL4 and tumors with cANGPTL4 bearing the T266M mutation (T266M cANGPTL4). We found that T266M cANGPTL4 bound to integrin α5ß1 with a reduced affinity compared to wt, leading to weaker activation of downstream signaling molecules. The mutant tumors exhibited impaired proliferation, anoikis resistance, and migratory capability and had reduced adenylate energy charge. Further investigations also revealed that cANGPTL4 regulated the expression of Glut2. These findings may explain the differences in the tumor characteristics and energy metabolism observed with the cANGPTL4 T266M mutation compared to tumors without the mutation.


Assuntos
Proteína 4 Semelhante a Angiopoietina/genética , Transportador de Glucose Tipo 2/genética , Integrina alfa5beta1/genética , Neoplasias Hepáticas/genética , Neoplasias Gástricas/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Animais , Anoikis/genética , Movimento Celular/genética , Proliferação de Células/genética , Dicroísmo Circular , Metabolismo Energético/genética , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Células Hep G2 , Humanos , Integrina alfa5beta1/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Mutagênese Sítio-Dirigida , Mutação , Invasividade Neoplásica/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Biol Chem ; 290(10): 6457-69, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25586180

RESUMO

The mechanism by which extracellular metabolites, including redox mediators and quorum-sensing signaling molecules, traffic through the extracellular matrix of biofilms is poorly explored. We hypothesize that functional amyloids, abundant in natural biofilms and possessing hydrophobic domains, retain these metabolites. Using surface plasmon resonance, we demonstrate that the quorum-sensing (QS) molecules, 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone, and the redox mediator pyocyanin bind with transient affinity to functional amyloids from Pseudomonas (Fap). Their high hydrophobicity predisposes them to signal-amyloid interactions, but specific interactions also play a role. Transient interactions allow for rapid association and dissociation kinetics, which make the QS molecules bioavailable and at the same time secure within the extracellular matrix as a consequence of serial bindings. Retention of the QS molecules was confirmed using Pseudomonas aeruginosa PAO1-based 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone reporter assays, showing that Fap fibrils pretreated with the QS molecules activate the reporters even after sequential washes. Pyocyanin retention was validated by electrochemical analysis of pyocyanin-pretreated Fap fibrils subjected to the same washing process. Results suggest that QS molecule-amyloid interactions are probably important in the turbulent environments commonly encountered in natural habitats.


Assuntos
Amiloide/química , Biofilmes , Pseudomonas aeruginosa/química , Percepção de Quorum/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Amiloide/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Dobramento de Proteína , Pseudomonas aeruginosa/genética
5.
J Am Chem Soc ; 138(1): 402-7, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26684612

RESUMO

Bacterial biofilms are responsible for a wide range of persistent infections. In the clinic, diagnosis of biofilm-associated infections relies heavily on culturing methods, which fail to detect nonculturable bacteria. Identification of novel fluorescent probes for biofilm imaging will greatly facilitate diagnosis of pathogenic bacterial infection. Herein, we report a novel fluorescent probe, CDy11 (compound of designation yellow 11), which targets amyloid in the Pseudomonas aeruginosa biofilm matrix through a diversity oriented fluorescent library approach (DOFLA). CDy11 was further demonstrated for in vivo imaging of P. aeruginosa in implant and corneal infection mice models.


Assuntos
Amiloide/química , Biofilmes , Corantes Fluorescentes , Pseudomonas aeruginosa/química
6.
Hum Mol Genet ; 23(17): 4569-80, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24722204

RESUMO

MicroRNAs (miRNAs) can repress multiple targets, but how a single de-balanced interaction affects others remained unclear. We found that changing a single miRNA-target interaction can simultaneously affect multiple other miRNA-target interactions and modify physiological phenotype. We show that miR-608 targets acetylcholinesterase (AChE) and demonstrate weakened miR-608 interaction with the rs17228616 AChE allele having a single-nucleotide polymorphism (SNP) in the 3'-untranslated region (3'UTR). In cultured cells, this weakened interaction potentiated miR-608-mediated suppression of other targets, including CDC42 and interleukin-6 (IL6). Postmortem human cortices homozygote for the minor rs17228616 allele showed AChE elevation and CDC42/IL6 decreases compared with major allele homozygotes. Additionally, minor allele heterozygote and homozygote subjects showed reduced cortisol and elevated blood pressure, predicting risk of anxiety and hypertension. Parallel suppression of the conserved brain CDC42 activity by intracerebroventricular ML141 injection caused acute anxiety in mice. We demonstrate that SNPs in miRNA-binding regions could cause expanded downstream effects changing important biological pathways.


Assuntos
Ansiedade/genética , Hipertensão/genética , MicroRNAs/metabolismo , Acetilcolinesterase/genética , Alelos , Animais , Sequência de Bases , Pressão Sanguínea , Encéfalo/metabolismo , Feminino , Predisposição Genética para Doença , Voluntários Saudáveis , Heterozigoto , Homozigoto , Humanos , Hidrocortisona/sangue , Hipertensão/sangue , Hipertensão/fisiopatologia , Interleucina-6/genética , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Primatas/genética , Especificidade da Espécie , Proteína cdc42 de Ligação ao GTP/metabolismo
7.
J Virol ; 89(7): 3471-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25589636

RESUMO

UNLABELLED: Flavivirus RNA synthesis is mediated by a multiprotein complex associated with the endoplasmic reticulum membrane, named the replication complex (RC). Within the flavivirus RC, NS4B, an integral membrane protein with a role in virulence and regulation of the innate immune response, binds to the NS3 protease-helicase. NS4B modulates the RNA helicase activity of NS3, but the molecular details of their interaction remain elusive. Here, we used dengue virus (DENV) to map the determinants for the NS3-NS4B interaction. Coimmunoprecipitation and an in situ proximity ligation assay confirmed that NS3 colocalizes with NS4B in both DENV-infected cells and cells coexpressing both proteins. Surface plasmon resonance demonstrated that subdomains 2 and 3 of the NS3 helicase region and the cytoplasmic loop of NS4B are required for binding. Using nuclear magnetic resonance (NMR), we found that the isolated cytoplasmic loop of NS4B is flexible, with a tendency to form a three-turn α-helix and two short ß-strands. Upon binding to the NS3 helicase, 12 amino acids within the cytoplasmic loop of NS4B exhibited line broadening, suggesting a participation in the interaction. Sequence alignment showed that 4 of these 12 residues are strictly conserved across different flaviviruses. Mutagenesis analysis showed that three (Q134, G140, and N144) of the four evolutionarily conserved NS4B residues are essential for DENV replication. The mapping of the NS3/NS4B-interacting regions described here can assist the design of inhibitors that disrupt their interface for antiviral therapy. IMPORTANCE: NS3 and NS4B are essential components of the flavivirus RC. Using DENV as a model, we mapped the interaction between the viral NS3 and NS4B proteins. The subdomains 2 and 3 of NS3 helicase as well as the cytoplasmic loop of NS4B are critical for the interaction. Functional analysis delineated residues within the NS4B cytoplasmic loop that are crucial for DENV replication. Our findings reveal molecular details of how flavivirus NS3 protein cooperates with NS4B within the RC. In addition, this study has established the rationale and assays to search for inhibitors disrupting the NS3-NS4B interaction for antiviral drug discovery.


Assuntos
Vírus da Dengue/fisiologia , Mapeamento de Interação de Proteínas , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Cricetinae , Análise Mutacional de DNA , Imunoprecipitação , Espectroscopia de Ressonância Magnética , Ligação Proteica , Conformação Proteica , RNA Helicases/química , RNA Helicases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
8.
Nucleic Acids Res ; 41(13): 6664-73, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23658228

RESUMO

Triplex is emerging as an important RNA tertiary structure motif, in which consecutive non-canonical base pairs form between a duplex and a third strand. RNA duplex region is also often functionally important site for protein binding. Thus, triplex-forming oligonucleotides (TFOs) may be developed to regulate various biological functions involving RNA, such as viral ribosomal frameshifting and reverse transcription. How chemical modification in TFOs affects RNA triplex stability, however, is not well understood. Here, we incorporated locked nucleic acid, 2-thio U- and 2'-O methyl-modified residues in a series of all pyrimidine RNA TFOs, and we studied the binding to two RNA hairpin structures. The 12-base-triple major-groove pyrimidine-purine-pyrimidine triplex structures form between the duplex regions of RNA/DNA hairpins and the complementary RNA TFOs. Ultraviolet-absorbance-detected thermal melting studies reveal that the locked nucleic acid and 2-thio U modifications in TFOs strongly enhance triplex formation with both parental RNA and DNA duplex regions. In addition, we found that incorporation of 2'-O methyl-modified residues in a TFO destabilizes and stabilizes triplex formation with RNA and DNA duplex regions, respectively. The (de)stabilization of RNA triplex formation may be facilitated through modulation of van der Waals contact, base stacking, hydrogen bonding, backbone pre-organization, geometric compatibility and/or dehydration energy. Better understanding of the molecular determinants of RNA triplex structure stability lays the foundation for designing and discovering novel sequence-specific duplex-binding ligands as diagnostic and therapeutic agents targeting RNA.


Assuntos
Oligonucleotídeos/química , RNA de Cadeia Dupla/química , DNA/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Cloreto de Sódio/química , Tionucleotídeos/química , Uridina/química
9.
J Infect Dis ; 210(10): 1616-26, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24864124

RESUMO

Malaria causes nearly 1 million deaths annually. Recent emergence of multidrug resistance highlights the need to develop novel therapeutic interventions against human malaria. Given the involvement of sugar binding plasmodial proteins in host invasion, we set out to identify such proteins as targets of small glycans. Combining multidisciplinary approaches, we report the discovery of a small molecule inhibitor, NIC, capable of inhibiting host invasion through interacting with a major invasion-related protein, merozoite surface protein-1 (MSP-1). This interaction was validated through computational, biochemical, and biophysical tools. Importantly, treatment with NIC prevented host invasion by Plasmodium falciparum and Plasmodium vivax--major causative organisms of human malaria. MSP-1, an indispensable antigen critical for invasion and suitably localized in abundance on the merozoite surface represents an ideal target for antimalarial development. The ability to target merozoite invasion proteins with specific small inhibitors opens up a new avenue to target this important pathogen.


Assuntos
Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Endocitose/efeitos dos fármacos , Proteína 1 de Superfície de Merozoito/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Humanos
10.
J Biol Chem ; 287(14): 10714-26, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22334666

RESUMO

Integrins are heterodimeric type I membrane cell adhesion molecules that are involved in many biological processes. Integrins are bidirectional signal transducers because their cytoplasmic tails are docking sites for cytoskeletal and signaling molecules. Kindlins are cytoplasmic molecules that mediate inside-out signaling and activation of the integrins. The three kindlin paralogs in humans are kindlin-1, -2, and -3. Each of these contains a 4.1-ezrin-radixin-moesin (FERM) domain and a pleckstrin homology domain. Kindlin-3 is expressed in platelets, hematopoietic cells, and endothelial cells. Here we show that kindlin-3 is involved in integrin αLß2 outside-in signaling. It also promotes micro-clustering of integrin αLß2. We provide evidence that kindlin-3 interacts with the receptor for activated-C kinase 1 (RACK1), a scaffold protein that folds into a seven-blade propeller. This interaction involves the pleckstrin homology domain of kindlin-3 and blades 5-7 of RACK1. Using the SKW3 human T lymphoma cells, we show that integrin αLß2 engagement by its ligand ICAM-1 promotes the association of kindlin-3 with RACK1. We also show that kindlin-3 co-localizes with RACK1 in polarized SKW3 cells and human T lymphoblasts. Our findings suggest that kindlin-3 plays an important role in integrin αLß2 outside-in signaling.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Animais , Adesão Celular , Linhagem Celular Tumoral , Polaridade Celular , Proteínas de Ligação ao GTP/química , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Molécula 1 de Adesão Intercelular/química , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas de Neoplasias/química , Ligação Proteica , Transporte Proteico , Receptores de Quinase C Ativada , Receptores de Superfície Celular/química , Linfócitos T/citologia , Linfócitos T/metabolismo
11.
J Biol Chem ; 287(48): 40525-34, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23035113

RESUMO

BACKGROUND: Dengue virus surface proteins, envelope (E) and pre-membrane (prM), undergo rearrangement during the maturation process at acidic condition. RESULTS: prM-stem region binds tighter to both E protein and lipid membrane when environment becomes acidic. CONCLUSION: At acidic condition, E proteins are attracted to the membrane-associated prM-stem. SIGNIFICANCE: prM-stem region induces virus structural changes during maturation. Newly assembled dengue viruses (DENV) undergo maturation to become infectious particles. The maturation process involves major rearrangement of virus surface premembrane (prM) and envelope (E) proteins. The prM-E complexes on immature viruses are first assembled as trimeric spikes in the neutral pH environment of the endoplasmic reticulum. When the virus is transported to the low pH environment of the exosomes, these spikes rearrange into dimeric structures, which lie parallel to the virus lipid envelope. The proteins involved in driving this process are unknown. Previous cryoelectron microscopy studies of the mature DENV showed that the prM-stem region (residues 111-131) is membrane-associated and may interact with the E proteins. Here we investigated the prM-stem region in modulating the virus maturation process. The binding of the prM-stem region to the E protein was shown to increase significantly at low pH compared with neutral pH in ELISAs and surface plasmon resonance studies. In addition, the affinity of the prM-stem region for the liposome, as measured by fluorescence correlation spectroscopy, was also increased when pH is lowered. These results suggest that the prM-stem region forms a tight association with the virus membrane and attracts the associated E protein in the low pH environment of exosomes. This will lead to the surface protein rearrangement observed during maturation.


Assuntos
Vírus da Dengue/fisiologia , Dengue/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Vírus da Dengue/química , Vírus da Dengue/genética , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Proteínas do Envelope Viral/genética
12.
J Bacteriol ; 194(21): 5922-31, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22942245

RESUMO

Type IV pili (T4P) are polar surface structures that play important roles in bacterial motility, biofilm formation, and pathogenicity. The protein FimX and its orthologs are known to mediate T4P formation in the human pathogen Pseudomonas aeruginosa and some other bacterial species. It was reported recently that FimX(XAC2398) from Xanthomonas axonopodis pv. citri interacts with PilZ(XAC1133) directly through the nonenzymatic EAL domain of FimX(XAC2398). Here we present experimental data to reveal that the strong interaction between FimX(XAC2398) and PilZ(XAC1133) is not conserved in P. aeruginosa and likely other Pseudomonas species. In vitro and in vivo binding experiments showed that the interaction between FimX and PilZ in P. aeruginosa is below the measurable limit. Surface plasmon resonance assays further confirmed that the interaction between the P. aeruginosa proteins is at least more than 3 orders of magnitude weaker than that between the X. axonopodis pv. citri pair. The N-terminal lobe region of FimX(XAC2398) was identified as the binding surface for PilZ(XAC1133) by amide hydrogen-deuterium exchange and site-directed mutagenesis studies. Lack of several key residues in the N-terminal lobe region of the EAL domain of FimX is likely to account for the greatly reduced binding affinity between FimX and PilZ in P. aeruginosa. All together, the results suggest that the interaction between PilZ and FimX in Xanthomonas species is not conserved in P. aeruginosa due to the evolutionary divergence among the FimX orthologs. The precise roles of FimX and PilZ in bacterial motility and T4P biogenesis are likely to vary among bacterial species.


Assuntos
Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/metabolismo , Mapeamento de Interação de Proteínas , Pseudomonas aeruginosa/fisiologia , Xanthomonas axonopodis/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Ressonância de Plasmônio de Superfície
13.
J Biol Chem ; 286(16): 14362-72, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21349834

RESUMO

Flavivirus NS5 protein encodes methyltransferase and RNA-dependent RNA polymerase (RdRp) activities. Structural analysis of flavivirus RdRp domains uncovered two conserved cavities (A and B). Both cavities are located in the thumb subdomains and represent potential targets for development of allosteric inhibitors. In this study, we used dengue virus as a model to analyze the function of the two RdRp cavities. Amino acids from both cavities were subjected to mutagenesis analysis in the context of genome-length RNA and recombinant NS5 protein; residues critical for viral replication were subjected to revertant analysis. For cavity A, we found that only one (Lys-756) of the seven selected amino acids is critical for viral replication. Alanine substitution of Lys-756 did not affect the RdRp activity, suggesting that this residue functions through a nonenzymatic mechanism. For cavity B, all four selected amino acids (Leu-328, Lys-330, Trp-859, and Ile-863) are critical for viral replication. Biochemical and revertant analyses showed that three of the four mutated residues (Leu-328, Trp-859, and Ile-863) function at the step of initiation of RNA synthesis, whereas the fourth residue (Lys-330) functions by interacting with the viral NS3 helicase domain. Collectively, our results have provided direct evidence for the hypothesis that cavity B, but not cavity A, from dengue virus NS5 polymerase could be a target for rational drug design.


Assuntos
Flavivirus/enzimologia , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Cricetinae , RNA Polimerases Dirigidas por DNA/química , Desenho de Fármacos , Enzimas/química , Lisina/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , RNA Polimerase Dependente de RNA/química , Homologia de Sequência de Aminoácidos , Triptofano/química , Células Vero , Replicação Viral
14.
Am J Pathol ; 177(6): 2791-803, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20952587

RESUMO

Adipose tissue secretes adipocytokines for energy homeostasis, but recent evidence indicates that some adipocytokines also have a profound local impact on wound healing. Upon skin injury, keratinocytes use various signaling molecules to promote reepithelialization for efficient wound closure. In this study, we identify a novel function of adipocytokine angiopoietin-like 4 (ANGPTL4) in keratinocytes during wound healing through the control of both integrin-mediated signaling and internalization. Using two different in vivo models based on topical immuno-neutralization of ANGPTL4 as well as ablation of the ANGPTL4 gene, we show that ANGPTL4-deficient mice exhibit delayed wound reepithelialization with impaired keratinocyte migration. Human keratinocytes in which endogenous ANGPTL4 expression was suppressed by either siRNA or a neutralizing antibody show impaired migration associated with diminished integrin-mediated signaling. Importantly, we identify integrins ß1 and ß5, but not ß3, as novel binding partners of ANGPTL4. ANGPTL4-bound integrin ß1 activated the FAK-Src-PAK1 signaling pathway, which is important for cell migration. The findings presented herein reveal an unpredicted role of ANGPTL4 during wound healing and demonstrate how ANGPTL4 stimulates intracellular signaling mechanisms to coordinate cellular behavior. Our findings provide insight into a novel cell migration control mechanism and underscore the physiological importance of the modulation of integrin activity in cancer metastasis.


Assuntos
Angiopoietinas/metabolismo , Movimento Celular , Cadeias beta de Integrinas/metabolismo , Integrina beta1/metabolismo , Queratinócitos/fisiologia , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/genética , Angiopoietinas/fisiologia , Animais , Adesão Celular/genética , Movimento Celular/genética , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica/genética , Ligação Proteica/fisiologia , Transporte Proteico/genética , Transdução de Sinais/genética , Pele/lesões , Pele/metabolismo , Cicatrização/genética , Cicatrização/fisiologia
15.
Biochim Biophys Acta ; 1787(4): 242-51, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19344662

RESUMO

Understanding the structural traits of subunit G is essential, as it is needed for V(1)V(O) assembly and function. Here solution NMR of the recombinant N- (G(1-59)) and C-terminal segment (G(61-114)) of subunit G, has been performed in the absence and presence of subunit d of the yeast V-ATPase. The data show that G does bind to subunit d via its N-terminal part, G(1-59) only. The residues of G(1-59) involved in d binding are Gly7 to Lys34. The structure of G(1-59) has been solved, revealing an alpha-helix between residues 10 and 56, whereby the first nine- and the last three residues of G(1-59) are flexible. The surface charge distribution of G(1-59) reveals an amphiphilic character at the N-terminus due to positive and negative charge distribution at one side and a hydrophobic surface on the opposite side of the structure. The C-terminus exhibits a strip of negative residues. The data imply that G(1-59)-d assembly is accomplished by hydrophobic interactions and salt-bridges of the polar residues. Based on the recently determined NMR structure of segment E(18-38) of subunit E of yeast V-ATPase and the presently solved structure of G(1-59), both proteins have been docked and binding epitopes have been analyzed.


Assuntos
Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Soluções , Ressonância de Plasmônio de Superfície , Fatores de Tempo , Titulometria
16.
Biochemistry ; 48(11): 2368-76, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19146426

RESUMO

Islet amyloid polypeptide (IAPP), a 37-amino acid polypeptide hormone of the calcitonin family, is colocalized and cosecreted with insulin in secretory granules of pancreatic islet beta cells. IAPP can assemble into toxic oligomers and amyloid fibrils, a hallmark of type 2 diabetes. Its interactions with insulin in the secretory granules might influence the formation of cytotoxic oligomers and amyloid fibrils. Presented NMR analysis shows that IAPP, free in solution and in complex with insulin, retains elements of residual secondary structure. NMR chemical shifts and (15)N relaxation data as well as 49 ns replica exchange molecular dynamic simulations indicate that the transiently populated helical structure in residues 11-18 is essential for interactions with insulin. These interactions are mediated by salt bridges between positively charged residues Arg11 or Arg18 of rat IAPP and Glu13 of insulin B chain as well as by hydrophobic interactions flanking the salt bridges. The insulin binding region is composed of the same amino acids in amyloidogenic human IAPP and soluble rat IAPP (with the sole exception of His/Arg-18), implying the same binding mode for both hormones. This His/Arg-18 mutation results in reduced affinity binding of human IAPP to insulin in comparison to rat IAPP as it is detected by surface plasmon resonance biosensor analysis. Implications of the described interactions between soluble forms of IAPP and insulin in preventing oligomerization of human IAPP are discussed.


Assuntos
Amiloide/química , Insulina/química , Sequência de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Animais , Humanos , Insulina/genética , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Conformação Molecular , Dados de Sequência Molecular , Ligação Proteica , Ratos , Solubilidade
17.
Anal Biochem ; 395(2): 195-204, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19682971

RESUMO

In drug discovery, the occurrence of false positives is a major hurdle in the search for lead compounds that can be developed into drugs. A small-molecular-weight compound that inhibits dengue virus protease at low micromolar levels was identified in a screening campaign. Binding to the enzyme was confirmed by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR). However, a structure-activity relationship study that ensued did not yield more potent leads. To further characterize the parental compound and its analogues, we developed a high-speed, low-cost, quantitative fluorescence quenching assay. We observed that specific analogues quenched dengue protease fluorescence and showed variation in IC(50) values. In contrast, nonspecifically binding compounds did not quench its fluorescence and showed similar IC(50) values with steep dose-response curves. We validated the assay using single Trp-to-Ala protease mutants and the competitive protease inhibitor aprotinin. Specific compounds detected in the binding assay were further analyzed by competitive ITC, NMR, and surface plasmon resonance, and the assay's utility in comparison with these biophysical methods is discussed. The sensitivity of this assay makes it highly useful for hit finding and validation in drug discovery. Furthermore, the technique can be readily adapted for studying other protein-ligand interactions.


Assuntos
Calorimetria/métodos , Vírus da Dengue/enzimologia , Corantes Fluorescentes/química , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Ressonância de Plasmônio de Superfície/métodos , Sítios de Ligação , Simulação por Computador , Peptídeo Hidrolases/química , Inibidores de Proteases/farmacologia , Sorotipagem , Espectrometria de Fluorescência , Relação Estrutura-Atividade
18.
Sci Rep ; 7(1): 14816, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093465

RESUMO

Vaults are naturally occurring ovoid nanoparticles constructed from a protein shell that is composed of multiple copies of major vault protein (MVP). The vault-interacting domain of vault poly(ADP-ribose)-polymerase (INT) has been used as a shuttle to pack biomolecular cargo in the vault lumen. However, the interaction between INT and MVP is poorly understood. It is hypothesized that the release rate of biomolecular cargo from the vault lumen is related to the interaction between MVP and INT. To tune the release of molecular cargos from the vault nanoparticles, we determined the interactions between the isolated INT-interacting MVP domains (iMVP) and wild-type INT and compared them to two structurally modified INT: 15-amino acid deletion at the C terminus (INTΔC15) and histidine substituted at the interaction surface (INT/DSA/3 H) to impart a pH-sensitive response. The apparent affinity constants determined using surface plasmon resonance (SPR) biosensor technology are 262 ± 4 nM for iMVP/INT, 1800 ± 160 nM for iMVP/INTΔC15 at pH 7.4. The INT/DSA/3 H exhibits stronger affinity to iMVP (K Dapp = 24 nM) and dissociates at a slower rate than wild-type INT at pH 6.0.


Assuntos
Poli(ADP-Ribose) Polimerases/metabolismo , Mapas de Interação de Proteínas , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Animais , Concentração de Íons de Hidrogênio , Modelos Moleculares , Poli(ADP-Ribose) Polimerases/química , Domínios e Motivos de Interação entre Proteínas , Ratos , Partículas de Ribonucleoproteínas em Forma de Abóbada/química
19.
PLoS One ; 10(4): e0123167, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25901570

RESUMO

MicroRNAs (miRNAs) are known to play a part in regulating important cellular processes. They generally perform their regulatory function through their binding with mRNAs, ultimately leading to a repression of target protein expression levels. However, their roles in cellular processes are poorly understood due to the limited understanding of their specific cellular targets. Aberrant levels of miRNAs have been found in hepatocellular carcinoma (HCC) including miR-181a. Using bioinformatics analysis, cyclin-dependent kinase inhibitor 1B (CDKN1ß) and transcriptional factor E2F7 were identified as potential targets of miR-181a. Validation analysis using surface plasmon resonance (SPR) showed a positive binding between miR-181a and the 3'UTRs of these two potential mRNA targets. In vivo luciferase assay further confirmed the positive miR-181a:mRNA bindings, where a significant decrease in luciferase activity was detected when HepG2 cells were co-transfected with the 3'UTR-containing reporter plasmids and miR-181a. The potential impact of miR-181a binding to its specific targets on the general cellular behavior was further investigated. Results showed that miR-181a significantly activated the MAPK/JNK pathway which regulates cell proliferation, supporting our recently reported findings. Inhibition of miR-181a, on the other hand, abolished the observed activation. Our findings open up a new approach in designing targeted functional analysis of miRNAs in cellular processes, through the identification of their cellular targets.


Assuntos
Biologia Computacional/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões 3' não Traduzidas/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Fator de Transcrição E2F7/genética , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Smad/metabolismo
20.
Methods Mol Biol ; 1138: 271-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24696343

RESUMO

Surface plasmon resonance (SPR) biosensors have become the mainstream method for biomolecular interaction analysis. It offers many advantages over conventional methods by its label-free, real-time monitoring, low sample consumption, high throughput, and remarkable sensitivity. We have examined dengue virus protein interactions in the context of antibody affinity measurement, protein-protein interaction, and in the screening of small molecule inhibitors as well as the characterization of the interactions between the small molecule binders and the relevant dengue protein. Here we describe the basic methods involved in performing SPR assays as well as in data processing and evaluation using some examples of dengue proteins.


Assuntos
Técnicas Biossensoriais/métodos , Vírus da Dengue/metabolismo , Proteínas Virais/metabolismo , Soluções Tampão , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA