Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell Proteomics ; 16(7): 1244-1257, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28490445

RESUMO

Crohn's Disease (CD) is a relapsing inflammation of the gastrointestinal tract that affects a young working age population and is increasing in developing countries. Half of all sufferers will experience stricturing or fistulizing intestinal complications that require extensive surgical interventions and neither genes nor clinical risk factors can predict this debilitating natural history. We applied discovery and verification phase studies as part of an NCI-FDA modeled biomarker pipeline to identify differences in the low-mass (<25kDa) blood-serum proteome between CD behavioral phenotypes. A significant enrichment of epithelial component proteins was identified in CD patients with intestinal complications using quantitative proteomic profiling with label-free Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). DAVID 6.7 (NIH) was used for functional annotation analysis of detected proteins and immunoblotting and multiple reaction monitoring (MRM) to verify a priori findings in a secondary independent cohort of complicated CD (CCD), uncomplicated inflammatory CD (ICD), Th1/17 pathway inflammation controls (rheumatoid arthritis), inflammatory bowel disease controls (ulcerative colitis), and healthy controls. Seventy-six high-confidence serum proteins were modulated in CCD versus ICD by LC-MS/MS (p < 0.05, FDR q<0.01), annotating to pathways of epithelial barrier homeostasis (p < 0.01). In verification phase, a putative serology panel developed from discovery proteomics data consisting of desmoglein-1, desmoplakin, and fatty acid-binding protein 5 (FABP5) distinguished CCD from all other groups (p = 0.041) and discriminated complication in CD (70% sensitivity and 72.5% specificity at score ≥1.907, AUC = 0.777, p = 0.007). An MRM assay secondarily confirmed increased FABP5 levels in CCD (p < 0.001). In a longitudinal subanalysis-cohort, FABP5 levels were stable over a two-month period with no behavioral changes (p = 0.099). These studies along the biomarker development pipeline provide substantial proof-of-principle that a blood test can be developed specific to transmural intestinal injury. Data are available via the PRIDE proteomics data repository under identifier PXD001821 and PeptideAtlas with identifier PASS00661.


Assuntos
Doença de Crohn/complicações , Doença de Crohn/metabolismo , Desmogleína 1/sangue , Desmoplaquinas/sangue , Proteínas de Ligação a Ácido Graxo/sangue , Mucosa Intestinal/lesões , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteínas Sanguíneas/análise , Adesão Celular , Cromatografia Líquida/métodos , Doença de Crohn/sangue , Desmogleína 1/metabolismo , Desmoplaquinas/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Humanos , Imunidade Inata , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Adulto Jovem
2.
Mol Cell Proteomics ; 14(2): 441-54, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25492093

RESUMO

Matrix effect is the alteration of an analyte's concentration-signal response caused by co-existing ion components. With electrospray ionization (ESI), matrix effects are believed to be a function of the relative concentrations, ionization efficiency, and solvation energies of the analytes within the electrospray ionization droplet. For biological matrices such as plasma, the interactions between droplet components is immensely complex and the effect on analyte signal response not well elucidated. This study comprised of three sequential quantitative analyses: we investigated whether there is a generalizable correlation between the range of unique ions in a sample matrix (complexity); the amount of matrix components (concentration); and matrix effect, by comparing an E. coli digest matrix (∼2600 protein proteome) with phospholipid depleted human blood plasma, and unfractionated, nondepleted human plasma matrices (∼10(7) proteome) for six human plasma peptide multiple reaction monitoring assays. Our data set demonstrated analyte-specific interactions with matrix complexity and concentration properties resulting in significant ion suppression for all peptides (p < 0.01), with nonuniform effects on the ion signals of the analytes and their stable-isotope analogs. These matrix effects were then assessed for translation into relative residual error and precision effects in a low concentration (∼0-250 ng/ml) range across no-matrix, complex matrix, and highly complex matrix, when a standard addition stable isotope dilution calibration method was used. Relative residual error (%) and precision (CV%) by stable isotope dilution were within <20%; however, error in phospholipid-depleted and nondepleted plasma matrices were significantly higher compared with no-matrix (p = 0.006). Finally a novel reverse-polynomial dilution calibration method with and without phospholipid-depletion was compared with stable isotope dilution for relative residual error and precision. Reverse-polynomial dilution techniques extend the Lower Limit of Quantification and reduce error (p = 0.005) in low-concentration plasma peptide assays and is broadly applicable for verification phase Tier 2 multiplexed multiple reaction monitoring assay development within the FDA-National Cancer Institute (NCI) biomarker development pipeline.


Assuntos
Técnicas de Diluição do Indicador , Limite de Detecção , Modelos Estatísticos , Peptídeos/sangue , Sequência de Aminoácidos , Calibragem , Escherichia coli/metabolismo , Humanos , Marcação por Isótopo , Dados de Sequência Molecular , Peptídeos/química , Fosfolipídeos/metabolismo
3.
Inflamm Bowel Dis ; 27(Suppl 2): S17-S24, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34791290

RESUMO

Despite recent developments in therapy for inflammatory bowel diseases (IBDs), there have been limited advances in diagnostic tools available to aid in disease management. A growing body of evidence suggests that there are important host-microbe interactions at the mucosal interface that modulate the inflammatory response in patients with IBD. Additionally, the importance of mucosal integrity and its disruption appears to be important in the pathophysiology and perpetuation of the disease. The ability to characterize this interface may provide valuable information for both disease monitoring and identification of new treatment targets. Endoscopy remains the primary tool for disease monitoring, and mucosal healing is the primary therapeutic target in IBD treatment. However, establishing mucosal healing requires repetitive endoscopic procedures, and endoscopy is limited by factors such as invasiveness, cost, and risk of adverse events. Moreover, the use of a bowel preparation for colonoscopies alters the mucus layer and thus perturbs evaluation of the host-microbe interaction. Stool sampling may also be inaccurate because it reflects the end state of metabolites and proteins, failing to take into account the degradation or alteration of substrates of interest by bacterial proteases and other enzymes during passage through the colon. A novel sampling capsule, called the Recoverable Sampling System (RSS), is being developed as a complementary tool to colonoscopy. The RSS is intended to be a platform for noninvasive autonomous sampling, preservation, handling, and storage of analytes of interest found in the gastrointestinal fluids. A proprietary preservative contained within the chambers of the capsule has been developed to stabilize DNA and proteins for ex vivo microbiome and metabolomics analyses. Surrogate markers such as SPP24 and GUCA2a have been identified to correlate with gut health, intestinal permeability, and inflammation and could be locally sampled by the RSS. The potential clinical utility of an RSS device is broad and would likely be able to guide therapy by allowing for more frequent disease monitoring, aiding in disease characterization, and facilitating in the identification of novel therapeutic targets.


A new technology is being developed, Recoverable Sampling System (RSS), that may allow sampling without a colonoscopy. This may lead to new biomarkers and even drug targets which may ultimately improve the care of these patients.


Assuntos
Disbiose , Doenças Inflamatórias Intestinais/diagnóstico , Mucosa Intestinal , Biomarcadores , Colo , Colonoscopia , Humanos
4.
Sci Rep ; 10(1): 12932, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737354

RESUMO

Epithelial barrier injury allows contaminants to cross-over into the blood stream and trigger an inflammatory response, contributing to inflammatory bowel disease (IBD). Currently there is no single test that can reliably diagnose intestinal mucosal barrier function or measure impaired epithelial cell integrity associated with increasing permeability. Here, we assess the association between serum proteins and small intestinal permeability as detected by confocal laser endomicroscopy (CLE); in particular the known IBD marker-secreted phosphoprotein 24 (SPP24) and its binding partners; and use developed monoclonal antibodies to assess the role of SPP24 in mucosal healing. Sera were obtained from 28 IBD patients and non-IBD controls undergoing CLE with scores ranging from low to high permeability, as well as active ulcerative colitis from 53 patients undergoing fecal microbiota transplant therapy (FMT). Higher permeability associated with altered lipid metabolism, heightened innate immune response and junctional protein signalling in UC patients. A correlation between increasing leak and SPP24 peptide was observed. There is a strong indication of the novel role of SPP24 in gut barrier dysfunction particularly in ulcerative colitis. Its correlation to the established CLE for monitoring permeability has the potential to provide a blood based parallel to monitor and guide therapy more readily across a broad spectrum of illnesses for which 'leak' dominates the pathology.


Assuntos
Colite Ulcerativa/sangue , Endocitose , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos , Fosfoproteínas/sangue , Transdução de Sinais , Adolescente , Adulto , Idoso , Biomarcadores , Colite Ulcerativa/patologia , Colite Ulcerativa/terapia , Transplante de Microbiota Fecal , Feminino , Humanos , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade
5.
Proteomes ; 6(2)2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-29614738

RESUMO

Over the years, the scientific community has explored myriads of theories in search of the etiology and a cure for inflammatory bowel disease (IBD). The cumulative evidence has pointed to the key role of the intestinal barrier and the breakdown of these mechanisms in IBD. More and more scientists and clinicians are embracing the concept of the impaired intestinal epithelial barrier and its role in the pathogenesis and natural history of IBD. However, we are missing a key tool that bridges these scientific insights to clinical practice. Our goal is to overcome the limitations in understanding the molecular physiology of intestinal barrier function and develop a clinical tool to assess and quantify it. This review article explores the proteins in the intestinal tissue that are pivotal in regulating intestinal permeability. Understanding the molecular pathophysiology of impaired intestinal barrier function in IBD may lead to the development of a biochemical method of assessing intestinal tissue integrity which will have a significant impact on the development of novel therapies targeting the intestinal mucosa.

7.
Discov Med ; 18(98): 113-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25227752

RESUMO

INTRODUCTION: Crohn's disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) characterized by variable phenotypes. Metabolites are signatures of biochemical activity that can reveal unknown pathogenic pathways. We employed untargeted mass spectrometry (MS) based metabolomics to identify novel inflammatory mechanisms in IBD and a targeted assay to quantify metabolites of the auto-immunomodulating kynurenine pathway (KP) in IBDs and health. MATERIALS AND METHODS: Metabolome analysis of CD, UC, and control plasmas was performed on a Liquid Chromatography (LC)-MS/MS system. KP metabolites quinolinic acid (QA) and picolinic acid (PA) were quantified by gas chromatography/MS. RESULTS: Nineteen UC, 25 CD, and 9 control plasmas were analyzed: 34 metabolites exhibited abundance profiles associated with CD by global metabolome analysis (P≤0.05, false discovery rate q≤0.01). Notably, inflammatory-implicated metabolites angiotensin IV (P=0.049, q<0.001), diphthamide (P=0.018, q<0.001), and GM3 gangliosides (P<0.001, q<0.001) were increased in CD. By targeted kynurenine metabolites assay, QA (73.53 ng/mL ± 23.40 SD) and combined kynurenine metabolites (CKM) were increased in CD (120.19 ± 39.71) compared to controls (QA 50.14 ± 15.04; P<0.01; CKM 92.73 ± 26.30; P<0.01). CD QA positively correlated with CDAI (r=0.85; P<0.01), CRP (r=0.46; P=0.01), and ESR (r=0.42; P=0.03), while CKMs correlated with CDAI (r=0.615; P<0.01) and CRP (r=0.615; P=0.02). CONCLUSIONS: Associations of angiotensin IV, diphthamide, and GM3 gangliosides with CD implicate novel pathways in activating a Th1/Th17 inflammatory profile. Increased QA concentrations in CD may indicate a defective auto-immunomodulation mechanism.


Assuntos
Doenças Inflamatórias Intestinais/sangue , Metaboloma , Adulto , Angiotensina II/análogos & derivados , Angiotensina II/sangue , Estudos de Casos e Controles , Colite Ulcerativa/sangue , Colite Ulcerativa/imunologia , Doença de Crohn/sangue , Doença de Crohn/imunologia , Feminino , Gangliosídeo G(M3)/sangue , Histidina/análogos & derivados , Histidina/sangue , Humanos , Mediadores da Inflamação/sangue , Doenças Inflamatórias Intestinais/imunologia , Cinurenina/sangue , Masculino , Redes e Vias Metabólicas , Metabolômica , Pessoa de Meia-Idade , Ácidos Picolínicos/sangue , Projetos Piloto , Ácido Quinolínico/sangue , Espectrometria de Massas em Tandem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA