RESUMO
Aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) are distinct disorders leading to left ventricular hypertrophy (LVH), but whether cardiac metabolism substantially differs between these in humans remains to be elucidated. We undertook an invasive (aortic root, coronary sinus) metabolic profiling in patients with severe AS and HCM in comparison with non-LVH controls to investigate cardiac fuel selection and metabolic remodeling. These patients were assessed under different physiological states (at rest, during stress induced by pacing). The identified changes in the metabolome were further validated by metabolomic and orthogonal transcriptomic analysis, in separately recruited patient cohorts. We identified a highly discriminant metabolomic signature in severe AS in all samples, regardless of sampling site, characterized by striking accumulation of long-chain acylcarnitines, intermediates of fatty acid transport across the inner mitochondrial membrane, and validated this in a separate cohort. Mechanistically, we identify a downregulation in the PPAR-α transcriptional network, including expression of genes regulating fatty acid oxidation (FAO). In silico modeling of ß-oxidation demonstrated that flux could be inhibited by both the accumulation of fatty acids as a substrate for mitochondria and the accumulation of medium-chain carnitines which induce competitive inhibition of the acyl-CoA dehydrogenases. We present a comprehensive analysis of changes in the metabolic pathways (transcriptome to metabolome) in severe AS, and its comparison to HCM. Our results demonstrate a progressive impairment of ß-oxidation from HCM to AS, particularly for FAO of long-chain fatty acids, and that the PPAR-α signaling network may be a specific metabolic therapeutic target in AS.
Assuntos
Estenose da Valva Aórtica , Cardiomiopatia Hipertrófica , Humanos , Receptores Ativados por Proliferador de Peroxissomo , Cardiomiopatia Hipertrófica/genética , Hipertrofia Ventricular Esquerda/genética , Estenose da Valva Aórtica/genética , Ácidos Graxos/metabolismoRESUMO
The indigenous population of the United Arab Emirates (UAE) has a unique demographic and cultural history. Its tradition of endogamy and consanguinity is expected to produce genetic homogeneity and partitioning of gene pools while population movements and intercontinental trade are likely to have contributed to genetic diversity. Emiratis and neighboring populations of the Middle East have been underrepresented in the population genetics literature with few studies covering the broader genetic history of the Arabian Peninsula. Here, we genotyped 1,198 individuals from the seven Emirates using 1.7 million markers and by employing haplotype-based algorithms and admixture analyses, we reveal the fine-scale genetic structure of the Emirati population. Shared ancestry and gene flow with neighboring populations display their unique geographic position while increased intra- versus inter-Emirati kinship and sharing of uniparental haplogroups, reflect the endogamous and consanguineous cultural traditions of the Emirates and their tribes.
Assuntos
Estruturas Genéticas , Genética Populacional , Consanguinidade , Geografia , Humanos , Emirados Árabes UnidosRESUMO
In this paper, we formulate a geometric nonlinear theory of the mechanics of accreting-ablating bodies. This is a generalization of the theory of accretion mechanics of Sozio & Yavari (Sozio & Yavari 2019 J. Nonlinear Sci. 29, 1813-1863 (doi:10.1007/s00332-019-09531-w)). More specifically, we are interested in large deformation analysis of bodies that undergo a continuous and simultaneous accretion and ablation on their boundaries while under external loads. In this formulation, the natural configuration of an accreting-ablating body is a time-dependent Riemannian [Formula: see text]-manifold with a metric that is an unknown a priori and is determined after solving the accretion-ablation initial-boundary-value problem. In addition to the time of attachment map, we introduce a time of detachment map that along with the time of attachment map, and the accretion and ablation velocities, describes the time-dependent reference configuration of the body. The kinematics, material manifold, material metric, constitutive equations and the balance laws are discussed in detail. As a concrete example and application of the geometric theory, we analyse a thick hollow circular cylinder made of an arbitrary incompressible isotropic material that is under a finite time-dependent extension while undergoing continuous ablation on its inner cylinder boundary and accretion on its outer cylinder boundary. The state of deformation and stress during the accretion-ablation process, and the residual stretch and stress after the completion of the accretion-ablation process, are computed. This article is part of the theme issue 'Foundational issues, analysis and geometry in continuum mechanics'.
RESUMO
BACKGROUND: Aging myocardium undergoes progressive cardiac hypertrophy and interstitial fibrosis with diastolic and systolic dysfunction. Recent metabolomics studies shed light on amino acids in aging. The present study aimed to dissect how aging leads to elevated plasma levels of the essential amino acid phenylalanine and how it may promote age-related cardiac dysfunction. METHODS: We studied cardiac structure and function, together with phenylalanine catabolism in wild-type (WT) and p21-/- mice (male; 2-24 months), with the latter known to be protected from cellular senescence. To explore phenylalanine's effects on cellular senescence and ectopic phenylalanine catabolism, we treated cardiomyocytes (primary adult rat or human AC-16) with phenylalanine. To establish a role for phenylalanine in driving cardiac aging, WT male mice were treated twice a day with phenylalanine (200 mg/kg) for a month. We also treated aged WT mice with tetrahydrobiopterin (10 mg/kg), the essential cofactor for the phenylalanine-degrading enzyme PAH (phenylalanine hydroxylase), or restricted dietary phenylalanine intake. The impact of senescence on hepatic phenylalanine catabolism was explored in vitro in AML12 hepatocytes treated with Nutlin3a (a p53 activator), with or without p21-targeting small interfering RNA or tetrahydrobiopterin, with quantification of PAH and tyrosine levels. RESULTS: Natural aging is associated with a progressive increase in plasma phenylalanine levels concomitant with cardiac dysfunction, whereas p21 deletion delayed these changes. Phenylalanine treatment induced premature cardiac deterioration in young WT mice, strikingly akin to that occurring with aging, while triggering cellular senescence, redox, and epigenetic changes. Pharmacological restoration of phenylalanine catabolism with tetrahydrobiopterin administration or dietary phenylalanine restriction abrogated the rise in plasma phenylalanine and reversed cardiac senescent alterations in aged WT mice. Observations from aged mice and human samples implicated age-related decline in hepatic phenylalanine catabolism as a key driver of elevated plasma phenylalanine levels and showed increased myocardial PAH-mediated phenylalanine catabolism, a novel signature of cardiac aging. CONCLUSIONS: Our findings establish a pathogenic role for increased phenylalanine levels in cardiac aging, linking plasma phenylalanine levels to cardiac senescence via dysregulated phenylalanine catabolism along a hepatic-cardiac axis. They highlight phenylalanine/PAH modulation as a potential therapeutic strategy for age-associated cardiac impairment.
Assuntos
Envelhecimento/metabolismo , Miocárdio/metabolismo , Fenilalanina/metabolismo , Envelhecimento/patologia , Aminoácidos/metabolismo , Animais , Biomarcadores , Biopterinas/análogos & derivados , Biopterinas/farmacologia , Catálise , Senescência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Cardiopatias/etiologia , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Fenilalanina/sangue , RatosRESUMO
The present study aimed to investigate if the manufacturer variability of croscarmellose sodium, a superdisintegrant, could have an impact on the dissolution of sitagliptin phosphate (a highly water-soluble drug) and escitalopram oxalate (a sparingly soluble drug) from their tablets. Some of the physicochemical properties of croscarmellose sodium (CCS) powders obtained from four different manufacturers were studied. Tablets containing 25 mg sitagliptin phosphate and 10 mg escitalopram oxalate were prepared, and the effects of the source and varying concentration of CCS (0, 1, 3, and 5%w/w) on the disintegration time and dissolution rate of the mentioned drugs were investigated. The results of the following tests: degree of substitution, residue on ignition, loss on drying, content of water-soluble material, and pH, carried out according to the USP/NF CCS monograph, were within the acceptance criteria for all four products. However, considerable differences were found in the swelling behavior of CCS samples, differentiating them into two groups of highly swelling and low-swelling products. The disintegration times of the tablets containing different quantities of the various CCS samples were similar, which confirms the indiscriminatory nature of this test. However, the highly swelling CCSs resulted in tablets with superior dissolution profiles. While with the highly water-soluble drug, increasing the concentration of low-swelling CCSs to 3 or 5% could improve the dissolution profiles; in the case of sparingly soluble drug, this was not possible. Therefore, functional differences between CCSs produced by various manufacturers are affected by the drug solubility and the ratio of the disintegrant used in the formulations.
Assuntos
Carboximetilcelulose Sódica , Escitalopram , Carboximetilcelulose Sódica/química , Oxalatos , Fosfato de Sitagliptina , Solubilidade , Comprimidos/química , Água/químicaRESUMO
AMPK is a critical energy sensor and target for widely used antidiabetic drugs. In ß cells, elevated glucose concentrations lower AMPK activity, and the ablation of both catalytic subunits [ß-cell-specific AMPK double-knockout (ßAMPKdKO) mice] impairs insulin secretion in vivo and ß-cell identity. MicroRNAs (miRNAs) are small RNAs that silence gene expression that are essential for pancreatic ß-cell function and identity and altered in diabetes. Here, we have explored the miRNAs acting downstream of AMPK in mouse and human ß cells. We identified 14 down-regulated and 9 up-regulated miRNAs in ßAMPKdKO vs. control islets. Gene ontology analysis of targeted transcripts revealed enrichment in pathways important for ß-cell function and identity. The most down-regulated miRNA was miR-184 (miR-184-3p), an important regulator of ß-cell function and compensatory expansion that is controlled by glucose and reduced in diabetes. We demonstrate that AMPK is a potent regulator and an important mediator of the negative effects of glucose on miR-184 expression. Additionally, we reveal sexual dimorphism in miR-184 expression in mouse and human islets. Collectively, these data demonstrate that glucose-mediated changes in AMPK activity are central for the regulation of miR-184 and other miRNAs in islets and provide a link between energy status and gene expression in ß cells.-Martinez-Sanchez, A., Nguyen-Tu, M.-S., Cebola, I., Yavari, A., Marchetti, P., Piemonti, L., de Koning, E., Shapiro, A. M. J., Johnson, P., Sakamoto, K., Smith, D. M., Leclerc, I., Ashrafian, H., Ferrer, J., Rutter, G. A. MiR-184 expression is regulated by AMPK in pancreatic islets.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus/metabolismo , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , MicroRNAs/biossíntese , Proteínas Quinases Ativadas por AMP/genética , Animais , Linhagem Celular , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Metabolismo Energético/genética , Feminino , Glucose/genética , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Caracteres SexuaisRESUMO
Folliculin (FLCN) is a tumor-suppressor protein mutated in the Birt-Hogg-Dubé (BHD) syndrome, which associates with two paralogous proteins, folliculin-interacting protein (FNIP)1 and FNIP2, forming a complex that interacts with the AMP-activated protein kinase (AMPK). Although it is clear that this complex influences AMPK and other metabolic regulators, reports of its effects have been inconsistent. To address this issue, we created a recessive loss-of-function variant of Fnip1 Homozygous FNIP1 deficiency resulted in profound B-cell deficiency, partially restored by overexpression of the antiapoptotic protein BCL2, whereas heterozygous deficiency caused a loss of marginal zone B cells. FNIP1-deficient mice developed cardiomyopathy characterized by left ventricular hypertrophy and glycogen accumulation, with close parallels to mice and humans bearing gain-of-function mutations in the γ2 subunit of AMPK. Concordantly, γ2-specific AMPK activity was elevated in neonatal FNIP1-deficient myocardium, whereas AMPK-dependent unc-51-like autophagy activating kinase 1 (ULK1) phosphorylation and autophagy were increased in FNIP1-deficient B-cell progenitors. These data support a role for FNIP1 as a negative regulator of AMPK.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos B/citologia , Cardiomiopatias/metabolismo , Proteínas de Transporte/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Linfócitos B/enzimologia , Linfócitos B/metabolismo , Cardiomiopatias/genética , Proteínas de Transporte/metabolismo , Contagem de Células , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genéticaRESUMO
Cysteine and glycine rich protein 3 (CSRP3) encodes Muscle LIM Protein (MLP), a well-established disease gene for Hypertrophic Cardiomyopathy (HCM). MLP, in contrast to the proteins encoded by the other recognised HCM disease genes, is non-sarcomeric, and has important signalling functions in cardiomyocytes. To gain insight into the disease mechanisms involved, we generated a knock-in mouse (KI) model, carrying the well documented HCM-causing CSRP3 mutation C58G. In vivo phenotyping of homozygous KI/KI mice revealed a robust cardiomyopathy phenotype with diastolic and systolic left ventricular dysfunction, which was supported by increased heart weight measurements. Transcriptome analysis by RNA-seq identified activation of pro-fibrotic signalling, induction of the fetal gene programme and activation of markers of hypertrophic signalling in these hearts. Further ex vivo analyses validated the activation of these pathways at transcript and protein level. Intriguingly, the abundance of MLP decreased in KI/KI mice by 80% and in KI/+ mice by 50%. Protein depletion was also observed in cellular studies for two further HCM-causing CSRP3 mutations (L44P and S54R/E55G). We show that MLP depletion is caused by proteasome action. Moreover, MLP C58G interacts with Bag3 and results in a proteotoxic response in the homozygous knock-in mice, as shown by induction of Bag3 and associated heat shock proteins. In conclusion, the newly generated mouse model provides insights into the underlying disease mechanisms of cardiomyopathy caused by mutations in the non-sarcomeric protein MLP. Furthermore, our cellular experiments suggest that protein depletion and proteasomal overload also play a role in other HCM-causing CSPR3 mutations that we investigated, indicating that reduced levels of functional MLP may be a common mechanism for HCM-causing CSPR3 mutations.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Cardiomiopatia Hipertrófica/genética , Coração/fisiopatologia , Proteínas com Domínio LIM/genética , Proteínas Musculares/genética , Animais , Cardiomiopatia Hipertrófica/fisiopatologia , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Camundongos , Mutação , Sarcômeros/genéticaRESUMO
Desmosomes are anchoring junctions that exist in cells that endure physical stress such as cardiac myocytes. The importance of desmosomes in maintaining the homeostasis of the myocardium is underscored by frequent mutations of desmosome components found in human patients and animal models. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a phenotype caused by mutations in desmosomal components in â¼ 50% of patients, however, the causes in the remaining 50% of patients still remain unknown. A deficiency of inhibitor of apoptosis-stimulating protein of p53 (iASPP), an evolutionarily conserved inhibitor of p53, caused by spontaneous mutation recently has been associated with a lethal autosomal recessive cardiomyopathy in Poll Hereford calves and Wa3 mice. However, the molecular mechanisms that mediate this putative function of iASPP are completely unknown. Here, we show that iASPP is expressed at intercalated discs in human and mouse postmitotic cardiomyocytes. iASPP interacts with desmoplakin and desmin in cardiomyocytes to maintain the integrity of desmosomes and intermediate filament networks in vitro and in vivo. iASPP deficiency specifically induces right ventricular dilatation in mouse embryos at embryonic day 16.5. iASPP-deficient mice with exon 8 deletion (Ppp1r13l(Δ8/Δ8)) die of sudden cardiac death, displaying features of ARVC. Intercalated discs in cardiomyocytes from four of six human ARVC cases show reduced or loss of iASPP. ARVC-derived desmoplakin mutants DSP-1-V30M and DSP-1-S299R exhibit weaker binding to iASPP. These data demonstrate that by interacting with desmoplakin and desmin, iASPP is an important regulator of desmosomal function both in vitro and in vivo. This newly identified property of iASPP may provide new molecular insight into the pathogenesis of ARVC.
Assuntos
Arritmias Cardíacas , Cardiomiopatia Hipertrófica Familiar , Morte Súbita , Desmossomos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Repressoras , Substituição de Aminoácidos , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Sequência de Bases , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/metabolismo , Cardiomiopatia Hipertrófica Familiar/patologia , Bovinos , Linhagem Celular Transformada , Desmina/genética , Desmina/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Desmossomos/genética , Desmossomos/metabolismo , Desmossomos/patologia , Modelos Animais de Doenças , Feminino , Humanos , Filamentos Intermediários , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Mutação de Sentido Incorreto , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Deleção de SequênciaRESUMO
AIMS: Stem cell-based regenerative therapies for the treatment of ischemic myocardium are currently a subject of intensive investigation. A variety of cell populations have been demonstrated to be safe and to exert some positive effects in human Phase I and II clinical trials, however conclusive evidence of efficacy is still lacking. While the relevance of animal models for appropriate pre-clinical safety and efficacy testing with regard to application in Phase III studies continues to increase, concerns have been expressed regarding the validity of the mouse model to predict clinical results. Against the background that hundreds of preclinical studies have assessed the efficacy of numerous kinds of cell preparations - including pluripotent stem cells - for cardiac repair, we undertook a systematic re-evaluation of data from the mouse model, which initially paved the way for the first clinical trials in this field. METHODS AND RESULTS: A systematic literature screen was performed to identify publications reporting results of cardiac stem cell therapies for the treatment of myocardial ischemia in the mouse model. Only peer-reviewed and placebo-controlled studies using magnet resonance imaging (MRI) for left ventricular ejection fraction (LVEF) assessment were included. Experimental data from 21 studies involving 583 animals demonstrate a significant improvement in LVEF of 8.59%+/- 2.36; p=.012 (95% CI, 3.7-13.8) compared with control animals. CONCLUSION: The mouse is a valid model to evaluate the efficacy of cell-based advanced therapies for the treatment of ischemic myocardial damage. Further studies are required to understand the mechanisms underlying stem cell based improvement of cardiac function after ischemia.
Assuntos
Infarto do Miocárdio/terapia , Transplante de Células-Tronco , Animais , Terapia Baseada em Transplante de Células e Tecidos , Bases de Dados Factuais , Modelos Animais de Doenças , Coração/fisiopatologia , Humanos , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Regeneração , Função Ventricular Esquerda/fisiologiaRESUMO
We have reported previously that a missense mutation in the mitochondrial fission gene Dynamin-related protein 1 (Drp1) underlies the Python mouse model of monogenic dilated cardiomyopathy. The aim of this study was to investigate the consequences of the C452F mutation on Drp1 protein function and to define the cellular sequelae leading to heart failure in the Python monogenic dilated cardiomyopathy model. We found that the C452F mutation increased Drp1 GTPase activity. The mutation also conferred resistance to oligomer disassembly by guanine nucleotides and high ionic strength solutions. In a mouse embryonic fibroblast model, Drp1 C452F cells exhibited abnormal mitochondrial morphology and defective mitophagy. Mitochondria in C452F mouse embryonic fibroblasts were depolarized and had reduced calcium uptake with impaired ATP production by oxidative phosphorylation. In the Python heart, we found a corresponding progressive decline in oxidative phosphorylation with age and activation of sterile inflammation. As a corollary, enhancing autophagy by exposure to a prolonged low-protein diet improved cardiac function in Python mice. In conclusion, failure of Drp1 disassembly impairs mitophagy, leading to a downstream cascade of mitochondrial depolarization, aberrant calcium handling, impaired ATP synthesis, and activation of sterile myocardial inflammation, resulting in heart failure.
Assuntos
Biopolímeros/fisiologia , Dinaminas/fisiologia , Insuficiência Cardíaca/etiologia , Mitofagia , Miocardite/etiologia , Animais , Biopolímeros/genética , Biopolímeros/metabolismo , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , Insuficiência Cardíaca/fisiopatologia , Camundongos , Mutação , Miocardite/fisiopatologia , Fosforilação OxidativaRESUMO
BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is associated with significant morbidity and mortality but is currently refractory to therapy. Despite limited evidence, heart rate reduction has been advocated, on the basis of physiological considerations, as a therapeutic strategy in HFpEF. We tested the hypothesis that heart rate reduction improves exercise capacity in HFpEF. METHODS AND RESULTS: We conducted a randomized, crossover study comparing selective heart rate reduction with the If blocker ivabradine at 7.5 mg twice daily versus placebo for 2 weeks each in 22 symptomatic patients with HFpEF who had objective evidence of exercise limitation (peak oxygen consumption at maximal exercise [o2 peak] <80% predicted for age and sex). The result was compared with 22 similarly treated matched asymptomatic hypertensive volunteers. The primary end point was the change in o2 peak. Secondary outcomes included tissue Doppler-derived E/e' at echocardiography, plasma brain natriuretic peptide, and quality-of-life scores. Ivabradine significantly reduced peak heart rate compared with placebo in the HFpEF (107 versus 129 bpm; P<0.0001) and hypertensive (127 versus 145 bpm; P=0.003) cohorts. Ivabradine compared with placebo significantly worsened the change in o2 peak in the HFpEF cohort (-2.1 versus 0.9 mL·kg(-1)·min(-1); P=0.003) and significantly reduced submaximal exercise capacity, as determined by the oxygen uptake efficiency slope. No significant effects on the secondary end points were discernable. CONCLUSION: Our observations bring into question the value of heart rate reduction with ivabradine for improving symptoms in a HFpEF population characterized by exercise limitation. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02354573.
Assuntos
Benzazepinas/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Frequência Cardíaca/efeitos dos fármacos , Volume Sistólico , Idoso , Idoso de 80 Anos ou mais , Doenças Assintomáticas , Biomarcadores , Estudos Cross-Over , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Método Duplo-Cego , Determinação de Ponto Final , Teste de Esforço , Tolerância ao Exercício , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertensão/sangue , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Ivabradina , Masculino , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/sangue , Consumo de Oxigênio/efeitos dos fármacos , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/fisiopatologia , Falha de TratamentoRESUMO
AMP-activated protein kinase (AMPK) plays diverse roles and coordinates complex metabolic pathways for maintenance of energy homeostasis. This could be explained by the fact that AMPK exists as multiple heterotrimer complexes comprising a catalytic α-subunit (α1 and α2) and regulatory ß (ß1 and ß2)- and γ (γ1, γ2, γ3)-subunits, which are uniquely distributed across different cell types. There has been keen interest in developing specific and isoform-selective AMPK-activating drugs for therapeutic use and also as research tools. Moreover, establishing ways of enhancing cellular AMPK activity would be beneficial for both purposes. Here, we investigated if a recently described potent AMPK activator called 991, in combination with the commonly used activator 5-aminoimidazole-4-carboxamide riboside or contraction, further enhances AMPK activity and glucose transport in mouse skeletal muscle ex vivo. Given that the γ3-subunit is exclusively expressed in skeletal muscle and has been implicated in contraction-induced glucose transport, we measured the activity of AMPKγ3 as well as ubiquitously expressed γ1-containing complexes. We initially validated the specificity of the antibodies for the assessment of isoform-specific AMPK activity using AMPK-deficient mouse models. We observed that a low dose of 991 (5 µM) stimulated a modest or negligible activity of both γ1- and γ3-containing AMPK complexes. Strikingly, dual treatment with 991 and 5-aminoimidazole-4-carboxamide riboside or 991 and contraction profoundly enhanced AMPKγ1/γ3 complex activation and glucose transport compared with any of the single treatments. The study demonstrates the utility of a dual activator approach to achieve a greater activation of AMPK and downstream physiological responses in various cell types, including skeletal muscle.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Ativadores de Enzimas/farmacologia , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Músculo Esquelético/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Aminoimidazol Carboxamida/farmacologia , Animais , Anticorpos Bloqueadores/farmacologia , Humanos , Técnicas In Vitro , Isoenzimas , Camundongos , Camundongos Knockout , Contração Muscular/efeitos dos fármacosRESUMO
RATIONALE: AMP-activated protein kinase (AMPK) is an important regulator of energy balance and signaling in the heart. Mutations affecting the regulatory γ2 subunit have been shown to cause an essentially cardiac-restricted phenotype of hypertrophy and conduction disease, suggesting a specific role for this subunit in the heart. OBJECTIVE: The γ isoforms are highly conserved at their C-termini but have unique N-terminal sequences, and we hypothesized that the N-terminus of γ2 may be involved in conferring substrate specificity or in determining intracellular localization. METHODS AND RESULTS: A yeast 2-hybrid screen of a human heart cDNA library using the N-terminal 273 residues of γ2 as bait identified cardiac troponin I (cTnI) as a putative interactor. In vitro studies showed that cTnI is a good AMPK substrate and that Ser150 is the principal residue phosphorylated. Furthermore, on AMPK activation during ischemia, Ser150 is phosphorylated in whole hearts. Using phosphomimics, measurements of actomyosin ATPase in vitro and force generation in demembraneated trabeculae showed that modification at Ser150 resulted in increased Ca(2+) sensitivity of contractile regulation. Treatment of cardiomyocytes with the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) resulted in increased myocyte contractility without changing the amplitude of Ca(2+) transient and prolonged relaxation despite shortening the time constant of Ca(2+) transient decay (tau). Compound C prevented the effect of AICAR on myocyte function. These results suggest that AMPK activation increases myocyte contraction and prolongs relaxation by increasing myofilament Ca(2+) sensitivity. CONCLUSIONS: We conclude that cTnI phosphorylation by AMPK may represent a novel mechanism of regulation of cardiac function.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Contração Miocárdica , Miócitos Cardíacos/enzimologia , Troponina I/metabolismo , Função Ventricular Esquerda , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Sinalização do Cálcio , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Ventrículos do Coração/enzimologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miosinas/efeitos dos fármacos , Miosinas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ribonucleotídeos/farmacologia , Serina , Fatores de Tempo , Troponina I/genética , Técnicas do Sistema de Duplo-Híbrido , Função Ventricular Esquerda/efeitos dos fármacosRESUMO
BACKGROUND: In nonobstructive hypertrophic cardiomyopathy (nHCM), there are no approved medical therapies. Impaired myocardial energetics is a potential cause of symptoms and exercise limitation. Ninerafaxstat, a novel cardiac mitotrope, enhances cardiac energetics. OBJECTIVES: This study sought to evaluate the safety and efficacy of ninerafaxstat in nHCM. METHODS: Patients with hypertrophic cardiomyopathy and left ventricular outflow tract gradient <30 mm Hg, ejection fraction ≥50%, and peak oxygen consumption <80% predicted were randomized to ninerafaxstat 200 mg twice daily or placebo (1:1) for 12 weeks. The primary endpoint was safety and tolerability, with efficacy outcomes also assessed as secondary endpoints. RESULTS: A total of 67 patients with nHCM were enrolled at 12 centers (57 ± 11.8 years of age; 55% women). Serious adverse events occurred in 11.8% (n = 4 of 34) in the ninerafaxstat group and 6.1% (n = 2 of 33) of patients in the placebo group. From baseline to 12 weeks, ninerafaxstat was associated with significantly better VE/Vco2 (ventilatory efficiency) slope compared with placebo with a least-squares (LS) mean difference between the groups of -2.1 (95% CI: -3.6 to -0.6; P = 0.006), with no significant difference in peak VO2 (P = 0.90). The Kansas City Cardiomyopathy Questionnaire Clinical Summary Score was directionally, though not significantly, improved with ninerafaxstat vs placebo (LS mean 3.2; 95% CI: -2.9 to 9.2; P = 0.30); however, it was statistically significant when analyzed post hoc in the 35 patients with baseline Kansas City Cardiomyopathy Questionnaire Clinical Summary Score ≤80 (LS mean 9.4; 95% CI: 0.3-18.5; P = 0.04). CONCLUSIONS: In symptomatic nHCM, novel drug therapy targeting myocardial energetics was safe and well tolerated and associated with better exercise performance and health status among those most symptomatically limited. The findings support assessing ninerafaxstat in a phase 3 study.