RESUMO
OBJECTIVE: This study was aimed to investigate the protective effect of methylene blue against lung injury induced by reperfusion of ischemic hindlimb in a rat model. METHODS: Twenty-four healthy adult male Sprague-Dawley rats were equally randomized into three groups: sham (SM) group, ischemia reperfusion (IR) group, and methylene blue (MB) group. Rats in both IR and MB groups were subjected to 4 h of ischemia by clamping the left femoral artery and then followed by 4 h of reperfusion. Treatment with 1% methylene blue (50 mg/kg) was administrated intraperitoneally at 10 min prior to reperfusion in the MB group. After 4 h of reperfusion, malondialdehyde (MDA) level, myeloperoxidase (MPO), and superoxide dismutase (SOD) activities in lung tissue were detected; inflammatory cytokines, including IL-1ß and IL-6, were measured in bronchoalveolar lavage fluid (BALF); correspondingly, the morphological changes and water content in both gastrocnemius muscle and lung samples were evaluated. RESULTS: Hindlimb IR caused remarkable morphological abnormalities and edema in both muscle and lung tissues. SOD activity was decreased, both the MPO activity and MDA level in lung tissue, as well as IL-1ß and IL-6 levels in BALF, were increased in the IR group (p < 0.05). Compared with the IR group, SOD activity was increased, whereas MPO activity and MDA level in lung tissue and IL-1ß and IL-6 levels in BALF were decreased in the MB group (p < 0.05). Also, the histological damage and edema in both lung and muscle tissues were significantly attenuated by the treatment of methylene blue. CONCLUSION: Methylene blue attenuates lung injury induced by hindlimb IR in rats, at least in part, by inhibiting oxidative stress.
Assuntos
Membro Posterior/patologia , Isquemia/complicações , Isquemia/tratamento farmacológico , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Azul de Metileno/uso terapêutico , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lesão Pulmonar/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismoRESUMO
Moso bamboo (Phyllostachys Pubescens) forests exhibit a great potential to sequestrate carbon dioxide from atmosphere and to mitigate global climate change. However, they were increasingly under abandoned (i.e., no fertilization, the low intensity and frequency of felling and bamboo shoot digging) due to decreasing economic values of bamboo-related products and increasing labor cost. So far, the changes in soil carbon (C) and nitrogen (N) pools in bamboo forests following abandonment are poorly addressed. In this study, Moso bamboo stands under intensively management and abandonment for different durations were sampled to explore the C and N pool dynamics at the top 40 cm soil. We classified abandonment durations into three categories: discarded or abandoned management for 1-6 years (DM-I), 7-12 years (DM-II) and 13-18 years (DM-III). Our results indicated that (1) soil organic carbon (SOC) storage was significantly increased with abandonment management compared with intensive management (Control, CK), but the durations of abandonment management had no significant effects on SOC. Microbial biomass carbon (MBC) concentration increased from DM-I to DM-III in the 0-40 cm soil layer (P < 0.01), and water-soluble organic carbon (WSOC) concentration decreased through DM-I (P < 0.01). (2) Abandonment management did not significantly affect soil total nitrogen (TN) storage at depth of 0-40 cm, with 9.54 Mg ha-1 for CK, 9.59 Mg ha-1 for DM-I, 9.89 Mg ha-1 for DM-II and 9.69 Mg ha-1 for DM-III. Water-soluble organic nitrogen (WSON) concentration significantly decreased from CK to DM-III. Ammonium nitrogen (NH4+-N) concentration increased from DM-I to DM-III (P < 0.01), and nitrate nitrogen (NO3--N) concentration decreased from CK to DM-III (P < 0.01). The results of the effects of abandonment durations on soil properties in Moso bamboo forests provide valuable information for forest restoration and management.
Assuntos
Florestas , Solo , Biomassa , China , Nitrogênio , PoaceaeRESUMO
BACKGROUND/AIMS: Ginsenoside Rg1 is regarded as the primary bioactive ingredient in Panax notoginseng that has been well recognized for its protective effects against ischemia/reperfusion (IR) injury. However, the mechanisms still remain elusive. Our study aims to investigate the effects of Rg1 against lung injury induced by hind-limb IR in rats. METHODS: Twenty-four Sprague Dawley rats were randomly submitted to sham operation (SM group), hind-limb IR (IR group), hind-limb IRâ¯+â¯Rg1 (Rg1 group), and hind-limb IRâ¯+â¯Pro-DTC group (PD group). All the rats except those in SM group were subjected to 3â¯h of ischemia followed by 6â¯h of reperfusion, and extra intravenous Rg1 and pyrrolidine dithiocarbamate (Pro-DTC), a selective inhibitor of nuclear factor kappa B (NF-κB), was administered intravenously before ischemia in the Rg1 and PD group, respectively. The activities of myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT), as well as protein expressions of NF-κB p65 and cyclooxygenases-2 (COX-2) in lung tissue, and thromboxane B2 (TXB2) and 6-keto-ProstaglandinF1α (6-keto-PGF1α) levels in bronchoalveolar lavage (BAL) fluid were detected. Morphological changes, index of quantitative assessment of histologic lung injury (IQA), apoptosis index (AI) and lung Wet/Dry ratio were also evaluated. RESULTS: The levels of Wet/Dry ratio, IQA, AI, activities of MPO and 6-keto-PGF1α/TXB2 ratio were increased, and NF-κB p65 and COX-2 protein expression were upregulated, while SOD and CAT levels were decreased in lung tissue in IR group as compared with SM group (pâ¯<â¯0.05), all the alterations could be significantly reversed by Rg1 or Pro-DTC pretreatment (pâ¯<â¯0.05). And Rg1 and Pro-DTC also significantly attenuated the pulmonary histological abnormalities induced by IR. CONCLUSION: Ginsenoside Rg1 potentially attenuated lung injury induced by hind-limb IR by regulating NF-κB/COX-2 signaling pathway.
Assuntos
Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Lesão Pulmonar/tratamento farmacológico , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar , Catalase/metabolismo , Membro Posterior/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Superóxido Dismutase/metabolismo , Fator de Transcrição RelA/metabolismoRESUMO
BACKGROUND: Skeletal muscle ischemia reperfusion accounts for high morbidity and mortality, and cyclooxygenase (COX)-2 is implicated in causing muscle damage. Downregulation of aquaporin-1 (AQP-1) transmembrane protein is implicated in skeletal muscle ischemia reperfusion induced remote lung injury. The expression of COX-2 in lung tissue and the effect of COX-2 inhibition on AQP-1 expression and lung injury during skeletal muscle ischemia reperfusion are not known. We investigated the role of COX-2 in lung injury induced by skeletal muscle ischemia reperfusion in rats and evaluated the effects of NS-398, a specific COX-2 inhibitor. METHODS: Twenty-four Sprague Dawley rats were randomized into 4 groups: sham group (SM group), sham+NS-398 group (SN group), ischemia reperfusion group (IR group) and ischemia reperfusion+NS-398 group (IN group). Rats in the IR and IN groups were subjected to 3h of bilateral ischemia followed by 6h of reperfusion in hindlimbs, and intravenous NS-398 8 mg/kg was administered in the IN group. In the SM and SN groups, rubber bands were in place without inflation. At the end of reperfusion, myeloperoxidase (MPO) activity, COX-2 and AQP-1 protein expression in lung tissue, PGE2 metabolite (PGEM), tumor necrosis factor (TNF)-α and interleukin (IL)-1ß levels in bronchoalveolar lavage (BAL) fluid were assessed. Histological changes in lung and muscle tissues and wet/dry (W/D) ratio were also evaluated. RESULTS: MPO activity, COX-2 expression, W/D ratio in lung tissue, and PGEM, TNF-α and IL-1ß levels in BAL fluid were significantly increased, while AQP-1 protein expression downregulated in the IR group as compared to that in the SM group (P<0.05). These changes were remarkably mitigated in the IN group (P<0.05). NS-398 treatment also alleviated histological signs of lung and skeletal muscle injury. CONCLUSION: COX-2 protein expression was upregulated in lung tissue in response to skeletal muscle ischemia reperfusion. COX-2 inhibition may modulate pulmonary AQP-1 expression and attenuate lung injury.
Assuntos
Aquaporina 1/metabolismo , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Lesão Pulmonar/tratamento farmacológico , Pulmão/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Nitrobenzenos/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Sulfonamidas/uso terapêutico , Animais , Aquaporina 1/genética , Ciclo-Oxigenase 2/genética , Interleucina-1beta/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Músculo Esquelético/patologia , Peroxidase/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismoRESUMO
OBJECTIVE: To investigate the expression profile of interleuki-1ß (IL-1ß) in rat myocardium at different time points during hypoxia/reoxygenation(H/R)transition. METHODS: The isolated Langendorff perfused rat heart model was established.Forty SD rats were randomly divided into sham group (A group) and hypoxia/reoxygenation group (H/R group). The H/R group rats were subdivided into H/R 0.5 h group(B group), H/R 1 h group(C group), H/R 2 h group(D group)according to reoxygenation time. The left ventricular development pressure(LVDP), maximal rates of increase/decrease of the left ventricular pressure(±dp/dtmax) were continuously recorded. The concentration of interleukin-1ß(IL-lß) and creatine kinase-MB (CK-MB) in myocardium was measured by ELISA. The mRNA expression of IL-lß in myocardium was determined by RT-PCR. Microstructure of myocardium was observed under light microscopy. RESULTS: The value of LVDP and ±dp/dtmax in hypoxia/reoxygenation group rat were significantly lower than that in sham group(P < 0.05). The expression of IL-lß and CK-MB at protein level and the expression of IL-1ß at mRNA level in hypoxia /reoxygenation group were higher than that in sham group(P < 0. 05). There were significant differences of the above parameters among H/R 0.5 h, 1 h, 2 h group(P <0.05). The concentration of IL-1ß and CK-MB, the mRNA expression of IL-1ß were higher in H/R 2 h group than that of other groups(P < 0.05). CONCLUSION: The high expression of IL-Iß in myocardium after myocardial hypoxia /reoxygenation in rats might lead to. ischemia/reperfusion injury.