Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 613(7942): 66-70, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600066

RESUMO

Production of hydrogen fuel from sunlight and water, two of the most abundant natural resources on Earth, offers one of the most promising pathways for carbon neutrality1-3. Some solar hydrogen production approaches, for example, photoelectrochemical water splitting, often require corrosive electrolyte, limiting their performance stability and environmental sustainability1,3. Alternatively, clean hydrogen can be produced directly from sunlight and water by photocatalytic water splitting2,4,5. The solar-to-hydrogen (STH) efficiency of photocatalytic water splitting, however, has remained very low. Here we have developed a strategy to achieve a high STH efficiency of 9.2 per cent using pure water, concentrated solar light and an indium gallium nitride photocatalyst. The success of this strategy originates from the synergistic effects of promoting forward hydrogen-oxygen evolution and inhibiting the reverse hydrogen-oxygen recombination by operating at an optimal reaction temperature (about 70 degrees Celsius), which can be directly achieved by harvesting the previously wasted infrared light in sunlight. Moreover, this temperature-dependent strategy also leads to an STH efficiency of about 7 per cent from widely available tap water and sea water and an STH efficiency of 6.2 per cent in a large-scale photocatalytic water-splitting system with a natural solar light capacity of 257 watts. Our study offers a practical approach to produce hydrogen fuel efficiently from natural solar light and water, overcoming the efficiency bottleneck of solar hydrogen production.

2.
Chem Sci ; 15(4): 1505-1510, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38274076

RESUMO

Converting relatively inert methane into active chemical fuels such as methanol with high selectivity through an energy-saving strategy has remained a grand challenge. Photocatalytic technology consuming solar energy is an appealing alternative for methane reforming. However, the low efficiency and the undesirable formation of low-value products, such as carbon dioxide and ethane, limit the commercial application of photocatalytic technology. Herein, we find a facile and practical water-promoted pathway for photocatalytic methane reforming into methanol, enabling methanol production from methane and oxygen with a high selectivity (>93%) and production rate (21.4 µmol cm-2 h-1 or 45.5 mmol g-1 h-1) on metallic Ag nanoparticle-loaded InGaN nanowires (Ag/InGaN). The experimental XPS and theoretical PDOS analyses reveal that water molecules adsorbed on Ag nanoparticles (AgNPs) can promote the electron transfer from InGaN to AgNPs, which enables the formation of partial Ag species with a lower oxidation state in AgNPs. Through the in situ IR spectrum and the reaction pathway simulation studies, these newly formed Ag species induced by water adsorption were demonstrated to be responsible for the highly selective methanol production due to the effective formation of a C-O bond and the optimal desorption of the formed methanol from the surface indium site of the InGaN photocatalyst. This unique water promotion effect leads to a 55-fold higher catalytic rate and 9-fold higher selectivity for methanol production compared to photocatalytic methane reforming without water addition. This finding offers a new pathway for achieving clean solar fuels by photocatalysis-based methane reforming.

3.
Adv Sci (Weinh) ; 11(26): e2309548, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38460173

RESUMO

Photoelectrochemical water splitting is a promising technique for converting solar energy into low-cost and eco-friendly H2 fuel. However, the production rate of H2 is limited by the insufficient number of photogenerated charge carriers in the conventional photoelectrodes under 1 sun (100 mW cm-2) light. Concentrated solar light irradiation can overcome the issue of low yield, but it leads to a new challenge of stability because the accelerated reaction alters the surface chemical composition of photoelectrodes. Here, it is demonstrated that loading Pt nanoparticles (NPs) on single crystalline GaN nanowires (NWs) grown on n+-p Si photoelectrode operates efficiently and stably under concentrated solar light. Although a large number of Pt NPs detach during the initial reaction due to H2 gas bubbling, some Pt NPs which have an epitaxial relation with GaN NWs remain stably anchored. In addition, the stability of the photoelectrode further improves by redepositing Pt NPs on the reacted Pt/GaN surface, which results in maintaining onset potential >0.5 V versus reversible hydrogen electrode and photocurrent density >60 mA cm-2 for over 1500 h. The heterointerface between Pt cocatalysts and single crystalline GaN nanostructures shows great potential in designing an efficient and stable photoelectrode for high-yield solar to H2 conversion.

4.
Antioxidants (Basel) ; 13(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38790610

RESUMO

Astaxanthin (AST), functioning as an efficient antioxidant and pigment, is one of the most expensive additives in shrimp feeds. How to improve the uptake efficiency of dietary astaxanthin into farmed shrimp is of significance. The present study investigated the effects of lysophosphatidylcholine (LPC), an emulsifier, on dietary astaxanthin efficiency, growth performance, body color, body composition, as well as lipid metabolism of juvenile Pacific white shrimp (average initial body weight: 2.4 g). Three diets were prepared: control group, the AST group (supplemented with 0.02% AST), and the AST + LPC group (supplemented with 0.02% AST and 0.1% LPC). Each diet was fed to triplicate tanks, and each tank was stocked with 30 shrimp. The shrimp were fed four times daily for eight weeks. The AST supplementation improved the growth of white shrimp, while LPC further promoted the final weight of shrimp, but the whole-shrimp proximate composition and fatty acid composition were only slightly affected by AST and LPC. The LPC supplementation significantly increased the astaxanthin deposition in the muscle. The LPC supplementation significantly increased the shell yellowness of both raw and cooked shrimp compared to the AST group. Moreover, the dietary LPC increased the high-density lipoprotein-cholesterol content but decreased the low-density lipoprotein-cholesterol content in the serum, indicating the possible regulation of lipid and cholesterol transport. The addition of astaxanthin significantly up-regulated the expression of npc2 in the hepatopancreas compared to the control group, while the addition of LPC down-regulated the expression of mttp compared to the AST group. In conclusion, the LPC supplementation could facilitate the deposition of dietary astaxanthin into farmed shrimp and further enlarge the beneficial effects of dietary astaxanthin. LPC may also independently regulate shrimp body color and cholesterol transportation. This was the first investigation of the promoting effects of LPC on dietary astaxanthin efficiency.

5.
Nat Commun ; 14(1): 179, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635289

RESUMO

Seawater electrolysis provides a viable method to produce clean hydrogen fuel. To date, however, the realization of high performance photocathodes for seawater hydrogen evolution reaction has remained challenging. Here, we introduce n+-p Si photocathodes with dramatically improved activity and stability for hydrogen evolution reaction in seawater, modified by Pt nanoclusters anchored on GaN nanowires. We find that Pt-Ga sites at the Pt/GaN interface promote the dissociation of water molecules and spilling H* over to neighboring Pt atoms for efficient H2 production. Pt/GaN/Si photocathodes achieve a current density of -10 mA/cm2 at 0.15 and 0.39 V vs. RHE and high applied bias photon-to-current efficiency of 1.7% and 7.9% in seawater (pH = 8.2) and phosphate-buffered seawater (pH = 7.4), respectively. We further demonstrate a record-high photocurrent density of ~169 mA/cm2 under concentrated solar light (9 suns). Moreover, Pt/GaN/Si can continuously produce H2 even under dark conditions by simply switching the electrical contact. This work provides valuable guidelines to design an efficient, stable, and energy-saving electrode for H2 generation by seawater splitting.

6.
Nat Commun ; 14(1): 2047, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041153

RESUMO

Solar photoelectrochemical reactions have been considered one of the most promising paths for sustainable energy production. To date, however, there has been no demonstration of semiconductor photoelectrodes with long-term stable operation in a two-electrode configuration, which is required for any practical application. Herein, we demonstrate the stable operation of a photocathode comprising Si and GaN, the two most produced semiconductors in the world, for 3,000 hrs without any performance degradation in two-electrode configurations. Measurements in both three- and two-electrode configurations suggest that surfaces of the GaN nanowires on Si photocathode transform in situ into Ga-O-N that drastically enhances hydrogen evolution and remains stable for 3,000 hrs. First principles calculations further revealed that the in-situ Ga-O-N species exhibit atomic-scale surface metallization. This study overcomes the conventional dilemma between efficiency and stability imposed by extrinsic cocatalysts, offering a path for practical application of photoelectrochemical devices and systems for clean energy.

7.
J Phys Chem Lett ; 13(34): 8122-8129, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998363

RESUMO

Clean and renewable photocatalytic technology for methane reforming into high-value liquid fuels, such as methanol, is a promising strategy for commercial industrial applications. However, poor charge separation, sluggish methane activation, and excessive oxidation collectively inhibit the production of methanol from photocatalytic methane reforming. Herein, we have developed enhanced metal-support interactions between a GaN nanowire photocatalyst and a Cu nanoparticle (CuNP) cocatalyst via p-doping in GaN. CuNP-loaded p-type GaN (Cu/p-GaN) with enhanced metal-support interaction has 3.5-fold higher activity (12.8 mmol g-1 h-1, higher than previous reports) for methanol production in photothermal catalytic methane reforming with oxygen as an oxidant and sunlight as the sole energy source than CuNP-loaded intrinsic GaN (Cu/i-GaN) or n-type GaN (Cu/n-GaN). In-situ IR measurements indicate that enhanced metal-support interaction significantly promotes activation of methane and formation of methanol. Combining with X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) simulations demonstrate that this enhanced metal-support interaction in Cu/p-GaN greatly improves electron transfer from p-GaN photocatalysts to the 3d states of CuNP cocatalysts through the interface between them. Catalytic pathway simulations further reveal that the enhanced metal-support interaction in Cu/p-GaN also desirably decreases the reaction energy of rate-determining methanol desorption, which decreases the excessive oxidation of the produced methanol and accelerates the regeneration of surface catalytic sites. These studies and findings offer critical insights into the design and development of metal nanoparticle-loaded photocatalysts for photocatalysis-based methane reforming into methanol.

8.
IEEE Internet Things J ; 8(7): 5778-5793, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37974901

RESUMO

To quickly isolate suspected cases to control the epidemics, this study proposes a body temperature monitoring system with a thermography based on the Internet of Things (IoT) architecture. The collected data are transmitted to a back-end platform via wireless communication. Using the analyzed data, the platform provides services, such as instant alerts for any anomalies, infectious disease outbreak prediction, and risk level assessment for a given area, and it will be a great help to epidemic prevention. The mean absolute percentage error and root mean square error of the proposed monitoring system under an extensive series of experiments are 0.04% and 0.0204°C, respectively. It shows that the body temperature measured by the thermal imaging sensor in the system can accurately represent the actual body temperature after specific calibrations that take the environmental temperature into account. It can also be expanded to a decision supporting system to help schools or government agencies to make proper decisions to stop the spread of infectious diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA