Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105405, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38229396

RESUMO

Gestational diabetes mellitus (GDM) is characterized by glucose intolerance in pregnant women without a previous diagnosis of diabetes. While the etiology of GDM remains elusive, the close association of GDM with increased maternal adiposity and advanced gestational age implicates insulin resistance as a culpable factor for the pathogenesis of GDM. Pregnancy is accompanied by the physiological induction of insulin resistance in the mother secondary to maternal weight gain. This effect serves to spare blood glucose for the fetus. To overcome insulin resistance, maternal ß-cells are conditioned to release more insulin into the blood. Such an adaptive response, termed ß-cell compensation, is essential for maintaining normal maternal metabolism. ß-cell compensation culminates in the expansion of ß-cell mass and augmentation of ß-cell function, accounting for increased insulin synthesis and secretion. As a result, a vast majority of mothers are protected from developing GDM during pregnancy. In at-risk pregnant women, ß-cells fail to compensate for maternal insulin resistance, contributing to insulin insufficiency and GDM. However, gestational ß-cell compensation ensues in early pregnancy, prior to the establishment of insulin resistance in late pregnancy. How ß-cells compensate for pregnancy and what causes ß-cell failure in GDM are subjects of investigation. In this mini-review, we will provide clinical and preclinical evidence that ß-cell compensation is pivotal for overriding maternal insulin resistance to protect against GDM. We will highlight key molecules whose functions are critical for integrating gestational hormones to ß-cell compensation for pregnancy. We will provide mechanistic insights into ß-cell decompensation in the etiology of GDM.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Células Secretoras de Insulina , Feminino , Humanos , Gravidez , Glicemia/metabolismo , Diabetes Gestacional/patologia , Teste de Tolerância a Glucose , Insulina , Células Secretoras de Insulina/fisiologia
2.
Small ; : e2404637, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151161

RESUMO

In deserts, sedimentation from frequent dust activities on solar cells poses a substantial technical challenge, reducing efficiency and necessitating advanced cost-inefficient cleaning mechanisms. Herein, a novel sandfish scale-inspired self-healing fluorinated copolymer-based triboelectric layer is directly incorporated on top of the polysilicon solar cell for sustained hybrid energy harvesting. The transparent biomimetic layer, with distinctive saw-tooth microstructured morphology, exhibits ultra-low sand adhesion and high abrasion-resistant properties, inhibits sedimentation deposition on solar cells, and concurrently harvests kinetic energy from wind-driven sand particles through triboelectric nanogenerator (TENG). The film exhibits a low friction coefficient (0.149), minimal sand adhesion force (27 nN), and a small wear area (327 µm2). In addition, over 2 months, a solar cell with the sandfish scale-inspired structure demonstrates only a 16% decline in maximum power output compared to the bare solar cell, which experiences a 60% decline. Further, the sandfish scale-based TENG device's electrical output is fully restored to its original value after a 6-h self-healing cycle and maintains consistent stable outputs. These results highlight the exceptional advantages of employing biomimetic self-healing materials as robust triboelectric layers, showcasing sustained device stability and durability for prolonged use in harsh desert environments, ultimately contributing to a low cost-of-electricity generation paradigm.

3.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731544

RESUMO

Autophagy is a potential target for the treatment of triple negative breast cancer (TNBC). Because of a lack of targeted therapies for TNBC, it is vital to find optimal agents that avoid chemoresistance and metastasis. Flavopereirine has anti-proliferation ability in cancer cells, but whether it regulates autophagy in breast cancer cells remains unclear. A Premo™ Tandem Autophagy Sensor Kit was used to image the stage at which flavopereirine affects autophagy by confocal microscopy. A plasmid that constitutively expresses p-AKT and siRNA targeting p38 mitogen-activated protein kinase (MAPK) was used to confirm the related signaling pathways by Western blot. We found that flavopereirine induced microtubule-associated protein 1 light chain 3 (LC3)-II accumulation in a dose- and time-dependent manner in MDA-MB-231 cells. Confocal florescent images showed that flavopereirine blocked autophagosome fusion with lysosomes. Western blotting showed that flavopereirine directly suppressed p-AKT levels and mammalian target of rapamycin (mTOR) translation. Recovery of AKT phosphorylation decreased the level of p-p38 MAPK and LC3-II, but not mTOR. Moreover, flavopereirine-induced LC3-II accumulation was partially reduced in MDA-MB-231 cells that were transfected with p38 MAPK siRNA. Overall, flavopereirine blocked autophagy via LC3-II accumulation in autophagosomes, which was mediated by the AKT/p38 MAPK signaling pathway.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Carbolinas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos
4.
Mol Cell Biochem ; 449(1-2): 117-125, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29667111

RESUMO

Anesthetics have immunomodulatory effects, but the use of different assay systems has contributed to inconsistent results in the literature. IL-1ß and reactive oxygen species (ROS) secreted by phagocytes are important factors that protect against Staphylococcus aureus infection. In this study, the effects of four intravenous anesthetics (propofol, thiamylal sodium, midazolam, and ketamine) on IL-1ß secretion, ROS, and bacterial survival in S. aureus-infected RAW264.7 cells were evaluated. S. aureus-infected RAW264.7 cells with or without intravenous anesthetic treatment were established as the experimental model. Cell supernatants were subjected to ELISAs to measure secreted IL-1ß. Cell pellets were subjected to qPCR and western blot analyses to analyze IL-1ß mRNA and protein levels. Luminol chemiluminescence assays were used to detect ROS, and bacterial survival was determined by counting the colony forming units at the beginning and end of the infection. Compared with the levels after treatment with the other intravenous anesthetics, secreted IL-1ß levels were lowest in the supernatant of S. aureus-infected RAW264.7 cell cultures after propofol treatment, but propofol did not decrease IL-1ß mRNA or protein expression. However, thiamylal sodium and midazolam decreased IL-1ß mRNA and protein expression in a dose-dependent manner. Additionally, propofol substantially decreased S. aureus-stimulated ROS and phagocytosis. Bacterial survival was strongly increased by propofol treatment. Of the four intravenous anesthetics, propofol was the most potent inhibitor of IL-1ß secretion and ROS level in S. aureus-infected RAW264.7 cells; moreover, propofol resulted in an increase in bacterial survival by inhibiting ROS and phagocytosis.


Assuntos
Interleucina-1beta/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Propofol/farmacologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Animais , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-27973995

RESUMO

In this study, natural organic matter (NOM) in source water, as well as the treated water after coagulation with or without potassium permanganate (KMnO4) preoxidation, was characterized by using high performance size exclusion chromatography with organic carbon detector (HPSEC-OCD) and fluorescence excitation emission matrices (F-EEMs) with parallel factor (PARAFAC) analysis. Bulk parameters, such as dissolved organic carbon (DOC) and ultraviolet light absorbance at 254 nm (UV254), were also analyzed. The results show that KMnO4 preoxidation caused the breakdown of high molecular weight (MW) organics into low MW organics. All organics, whether those that existed in the source water or those generated by KMnO4 preoxidation, could be partly removed by coagulation. Combining the derived organic fractions obtained from HPSEC-OCD with peak-fitting and from F-EEMs with PARAFAC on the same sample, humic substances have been specified as the main organic composition. Further, the predictive models for trihalomethanes formation potential (THMFP) and haloacetic acids formation potential (HAAFP) based on organic fractions from HPSEC-OCD have higher accuracy than those based on the components from PARAFAC modeling. These models provide useful tools to specify the organic fractions from HPSEC-OCD and F-EEMs that constitute active precursors towards trihalomethanes (THMs) or haloacetic acids (HAAs) formation in water. Further, by knowing the major organic precursors, it would facilitate choosing the appropriate water treatment process for disinfection by-products (DBPs) control.


Assuntos
Água Potável/química , Monitoramento Ambiental/métodos , Substâncias Húmicas/análise , Compostos Orgânicos/análise , Trialometanos/química , Poluentes Químicos da Água/química , Água Potável/análise , Compostos Orgânicos/química , Taiwan , Trialometanos/análise , Poluentes Químicos da Água/análise
6.
Plant Cell ; 24(5): 1746-59, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22623495

RESUMO

Screening cDNA libraries for genes encoding proteins that interact with a bait protein is usually performed in yeast. However, subcellular compartmentation and protein modification may differ in yeast and plant cells, resulting in misidentification of protein partners. We used bimolecular fluorescence complementation technology to screen a plant cDNA library against a bait protein directly in plants. As proof of concept, we used the N-terminal fragment of yellow fluorescent protein- or nVenus-tagged Agrobacterium tumefaciens VirE2 and VirD2 proteins and the C-terminal extension (CTE) domain of Arabidopsis thaliana telomerase reverse transcriptase as baits to screen an Arabidopsis cDNA library encoding proteins tagged with the C-terminal fragment of yellow fluorescent protein. A library of colonies representing ~2 × 10(5) cDNAs was arrayed in 384-well plates. DNA was isolated from pools of 10 plates, individual plates, and individual rows and columns of the plates. Sequential screening of subsets of cDNAs in Arabidopsis leaf or tobacco (Nicotiana tabacum) Bright Yellow-2 protoplasts identified single cDNA clones encoding proteins that interact with either, or both, of the Agrobacterium bait proteins, or with CTE. T-DNA insertions in the genes represented by some cDNAs revealed five novel Arabidopsis proteins important for Agrobacterium-mediated plant transformation. We also used this cDNA library to confirm VirE2-interacting proteins in orchid (Phalaenopsis amabilis) flowers. Thus, this technology can be applied to several plant species.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Biblioteca Gênica , Ligação Proteica
7.
BMC Cancer ; 15: 172, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25885317

RESUMO

BACKGROUND: Mutant Ras plays multiple functions in tumorigenesis including tumor formation and metastasis. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a metastasis inhibitor gene, suppresses matrix metalloproteinase (MMP) activity in the metastatic cascade. Clarifying the relationship between Ras and RECK and understanding the underlying molecular mechanism may lead to the development of better treatment for Ras-related tumors. METHODS: Suppression subtractive hybridization PCR (SSH PCR) was conducted to identify Ha-ras (val12) up-regulated genes in bladder cancer cells. Stable cell lines of human breast cancer (MCF-7-ras) and mouse NIH3T3 fibroblasts (7-4) harboring the inducible Ha-ras (val12) oncogene, which could be induced by isopropylthio-ß-D-galactoside (IPTG), were used to clarify the relationship between Ras and the up-regulated genes. Chromatin immunoprecipitation (ChIP) assay, DNA affinity precipitation assay (DAPA) and RECK reporter gene assay were utilized to confirm the complex formation and binding with promoters. RESULTS: Retinoblastoma binding protein-7 (RbAp46) was identified and confirmed as a Ha-ras (val12) up-regulated gene. RbAp46 could bind with histone deacetylase (HDAC1) and Sp1, followed by binding to RECK promoter at the Sp1 site resulting in repression of RECK expression. High expression of Ras protein accompanied with high RbAp46 and low RECK expression were detected in 75% (3/4) of the clinical bladder cancer tumor tissues compared to the adjacent normal parts. Ras induced RbAp46 expression increases invasion of the bladder cancer T24 cells and MMP-9 activity was increased, which was confirmed by specific lentiviral shRNAs inhibitors against Ras and RbAp46. Similarly, knockdown of RbAp46 expression in the stable NIH3T3 cells "7-4" by shRNA decreased Ras-related lung metastasis using a xenograft nude mice model. CONCLUSIONS: We confirmed that RbAp46 is a Ha-ras (val12) up-regulated gene and binds with HDAC1 and Sp1. Furthermore, RbAp46 binds to the RECK promoter at the Sp1 site via recruitment by Sp1. RECK is subsequently activated, leading to increased MMP9 activity, which may lead to increased metastasis in vivo. Our findings of Ras upregulation of RbAp46 may lead to revealing a novel mechanism of Ras-related tumor cell metastasis.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Genes ras , Neoplasias Pulmonares/metabolismo , Regiões Promotoras Genéticas , Proteína 7 de Ligação ao Retinoblastoma/biossíntese , Regulação para Cima , Animais , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Genes ras/fisiologia , Humanos , Neoplasias Pulmonares/patologia , Células MCF-7 , Camundongos , Camundongos Nus , Células NIH 3T3 , Regiões Promotoras Genéticas/fisiologia , Regulação para Cima/fisiologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/secundário
8.
World J Gastroenterol ; 30(9): 1011-1017, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577182

RESUMO

With continuous population and economic growth in the 21st century, plastic pollution is a major global issue. However, the health concern of microplastics/ nanoplastics (MPs/NPs) decomposed from plastic wastes has drawn public attention only in the recent decade. This article summarizes recent works dedicated to understanding the impact of MPs/NPs on the liver-the largest digestive organ, which is one of the primary routes that MPs/NPs enter human bodies. The interrelated mechanisms including oxidative stress, hepatocyte energy re-distribution, cell death and autophagy, as well as immune responses and inflammation, were also featured. In addition, the disturbance of microbiome and gut-liver axis, and the association with clinical diseases such as metabolic dysfunction-associated fatty liver disease, steatohepatitis, liver fibrosis, and cirrhosis were briefly discussed. Finally, we discussed potential directions in regard to this trending topic, highlighted current challenges in research, and proposed possible solutions.


Assuntos
Microplásticos , Hepatopatia Gordurosa não Alcoólica , Humanos , Microplásticos/efeitos adversos , Plásticos , Cirrose Hepática
9.
Cell Biochem Biophys ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856832

RESUMO

Lipid emulsions are the primary source of calories and fatty acids that are used to provide essential energy and nutrients to patients suffering from severe intestinal failure and critical illness. However, their use has been linked to adverse effects on patient outcomes, notably affecting immune defenses and inflammatory responses. ClinOleic is a lipid emulsion containing a mixture of olive oil and soybean oil (80:20). The effect of ClinOleic on the differentiation of M1 macrophages remains unclear. In this study, we isolated human monocytes and added ClinOleic to differentiation culture media to investigate whether it affects monocyte polarization into M1 macrophages and macrophage functions, such as reactive oxygen species (ROS) production and phagocytosis. ROS production was stimulated by live S. aureus and detected with L-012, a chemiluminescence emission agent. Phagocytic capacity was assayed using pHrodo™ Green S. aureus Bioparticles® Conjugate. We found that M1 cell morphology, surface markers (CD80 and CD86), and M1-associated cytokines (TNF-α and IL-6) did not significantly change upon incubation with ClinOleic during M1 polarization. However, S. aureus-triggered ROS production was significantly lower in M1 macrophages differentiated with ClinOleic than in those not treated with ClinOleic. The inhibitory effect of ClinOleic on macrophage function also appeared in the phagocytosis assay. Taken together, these findings reveal that ClinOleic has a limited impact on the M1 differentiation phenotype but obviously reduces ROS production and phagocytosis.

10.
Nat Commun ; 15(1): 7885, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251588

RESUMO

The IL6-GP130-STAT3 pathway facilitates lung cancer progression and resistance to tyrosine kinase inhibitors. Although glycosylation alters the stability of GP130, its effect on the ligand IL6 remains unclear. We herein find that N-glycosylated IL6, especially at Asn73, primarily stimulates JAK-STAT3 signaling and prolongs STAT3 phosphorylation, whereas N-glycosylation-defective IL6 (deNG-IL6) induces shortened STAT3 activation and alters the downstream signaling preference for the SRC-YAP-SOX2 axis. This signaling shift induces epithelial-mesenchymal transition (EMT) and migration in vitro and metastasis in vivo, which are suppressed by targeted inhibitors and shRNAs against SRC, YAP, and SOX2. Osimertinib-resistant lung cancer cells secrete a large amount of deNG-IL6 through reduced N-glycosyltransferase gene expression, leading to clear SRC-YAP activation. deNG-IL6 contributes to drug resistance, as confirmed by in silico analysis of cellular and clinical transcriptomes and signal expression in patient specimens. Therefore, the N-glycosylation status of IL6 not only affects cell behaviors but also shows promise in monitoring the dynamics of lung cancer evolution.


Assuntos
Acrilamidas , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Interleucina-6 , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Fator de Transcrição STAT3 , Humanos , Glicosilação , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Interleucina-6/metabolismo , Interleucina-6/genética , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Inibidores de Proteínas Quinases/farmacologia , Animais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Linhagem Celular Tumoral , Acrilamidas/farmacologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Compostos de Anilina/farmacologia , Receptor gp130 de Citocina/metabolismo , Receptor gp130 de Citocina/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Fosforilação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Quinases da Família src/metabolismo , Quinases da Família src/genética , Camundongos Nus , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica , Feminino , Indóis , Pirimidinas
11.
Am J Respir Cell Mol Biol ; 49(2): 241-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23526220

RESUMO

Metformin has been used as first-line treatment in patients with type 2 diabetes, and is reported to reduce cancer risk and progression by activating the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. Cisplatin remains the main drug for treating advanced non-small-cell lung cancer. However, drug resistance often develops through several mechanisms during the treatment course, including one mechanism mediated by the activation of the IL-6/signal transducer and activator of transcription (STAT)-3 pathway, related to the generation of reactive oxygen species (ROS). This study demonstrated a correlation between STAT3 phosphorylation and cisplatin cytotoxicity, using AS2 (PC14PE6/AS2)-derived cell lines (AS2/S3C) that contained constitutively active STAT3 plasmids as a model. A STAT3 inhibitor (JSI-124) enhanced the cisplatin sensitivity in AS2 cells, whereas metformin inhibited STAT3 phosphorylation and enhanced cisplatin cytotoxicity. By contrast, another AMPK activator (5-aminoimidazole-4-carboxamide-riboside) failed to produce these effects. LKB1-AMPK silencing by small, interfering RNA or mammalian target of rapamycin (mTOR) inhibition by rapamycin or pp242 did not alter the effect of metformin on STAT3 activity suppression, suggesting that metformin can modulate the STAT3 pathway through an LKB1-AMPK-independent and probably mTOR-independent mechanism. Metformin also inhibited cisplatin-induced ROS production and autocrine IL-6 secretion in AS2 cells. Both mechanisms contributed to the ability of metformin to suppress STAT3 activation in cancer cells, which resulted in the decreased secretion of vascular endothelial growth factor by cancer cells. The growth of subcutaneous tumor xenografts was significantly delayed by a combination of cisplatin and metformin. This is the first study to demonstrate that metformin suppresses STAT3 activation via LKB1-AMPK-mTOR-independent but ROS-related and autocrine IL-6 production-related pathways. Thus, metformin helps to overcome tumor drug resistance by targeting STAT3.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Metformina/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/genética , Animais , Antineoplásicos/agonistas , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Cisplatino/agonistas , Sinergismo Farmacológico , Inativação Gênica , Humanos , Hipoglicemiantes/agonistas , Interleucina-6/genética , Interleucina-6/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metformina/agonistas , Camundongos , Camundongos SCID , Proteínas Serina-Treonina Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
World J Gastroenterol ; 29(5): 780-799, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36816628

RESUMO

The high incidence of hepatocellular carcinoma (HCC) recurrence negatively impacts outcomes of patients treated with curative intent despite advances in surgical techniques and other locoregional liver-targeting therapies. Over the past few decades, the emergence of transcriptome analysis tools, including real-time quantitative reverse transcription PCR, microarrays, and RNA sequencing, has not only largely contributed to our knowledge about the pathogenesis of recurrent HCC but also led to the development of outcome prediction models based on differentially expressed gene signatures. In recent years, the single-cell RNA sequencing technique has revolutionized our ability to study the complicated crosstalk between cancer cells and the immune environment, which may benefit further investigations on the role of different immune cells in HCC recurrence and the identification of potential therapeutic targets. In the present article, we summarized the major findings yielded with these transcriptome methods within the framework of a causal model consisting of three domains: primary cancer cells; carcinogenic stimuli; and tumor microenvironment. We provided a comprehensive review of the insights that transcriptome analyses have provided into diagnostics, surveillance, and treatment of HCC recurrence.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Medicina de Precisão , Perfilação da Expressão Gênica , Transcriptoma , Microambiente Tumoral
13.
Endocr Connect ; 12(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37606078

RESUMO

Secondary hyperparathyroidism (SHPT) is a common complication of end-stage kidney disease (ESKD). Hungry bone syndrome (HBS) occurs frequently in patients on maintenance dialysis receiving parathyroidectomy for refractory SHPT. However, there is scanty study investigating the clinical risk factors that predict postoperative HBS, and its outcome in peritoneal dialysis (PD) patients. We conducted a single-center retrospective study to analyze 66 PD patients who had undergone parathyroidectomy for secondary hyperparathyroidism at Chang Gung Memorial Hospital between 2009 and 2019. The patients were stratified into two groups based on the presence (n=47) or absence (n=19) of HBS after parathyroidectomy. Subtotal parathyroidectomy was the most common surgery performed (74.2%), followed by total parathyroidectomy with autoimplantation (25.8%). Pathological examination of all surgical specimens revealed parathyroid hyperplasia (100%). Patients with HBS had lower levels of postoperative nadir corrected calcium, higher alkaline phosphate (ALP), and higher potassium levels compared with patients without HBS (all P<0.05). A multivariate logistic regression model confirmed that lower preoperative serum calcium level (OR 0.354, 95% CI 0.133-0.940, P=0.037), higher ALP (OR 1.026, 95% CI 1.008-1.044, P=0.004), and higher potassium level (OR 6.894, 95% CI 1.806-26.317, P=0.005) were associated with HBS after parathyroidectomy. Patients were followed for 58.2±30.8 months after the surgery. There was no significant difference between HBS and non-HBS groups in persistence (P=0.496) or recurrence (P=1.000) of hyperparathyroidism. The overall mortality rate was 10.6% with no significant difference found between both groups (P=0.099). We concluded that HBS is a common complication (71.2%) of parathyroidectomy for SHPT and should be managed appropriately.

14.
Carcinogenesis ; 33(11): 2065-75, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22847181

RESUMO

Growing evidence suggests that Stat3 contributes to chemoresistance. However, the impact of chemotherapy on Stat3 activity is unclear. We found that paclitaxel activated Stat3 in the human lung cancer cell lines PC14PE6AS2 (AS2) and H157, whereas it reduced Stat3 activation in A549 and H460 cells. Pretreatment of AS2 and H157 cells with rotenone, an inhibitor of mitochondrially produced reactive oxygen species (ROS), or carbonyl cyanide p-(trifluoromethoxy)-phenylhydrazone (FCCP), a mitochondrial uncoupler, suppressed the paclitaxel-induced activation of Stat3. Uncoupling protein 2 (UCP-2), located in the inner membrane of the mitochondria, can reduce ROS production in conditions of oxidative stress. UCP-2 protein expression in the four cancer cell lines was higher than that in normal lung epithelial cells (NL-20), but its expression was lower in AS2 and H157 cells relative to A549 and H460 cells. Silencing high UCP-2 expression with small interfering RNA (siRNA) in A549 and H460 cells restored paclitaxel-induced Stat3 activation. In addition, paclitaxel-induced Stat3 activation led to the upregulation of survivin and Mcl-1, which in turn facilitated cell survival. Moreover, the CL1-5 subline had lower UCP-2 expression relative to the parental CL1-0 cells. Treatment with paclitaxel activated Stat3 in CL1-5 but not in CL1-0 cells, whereas in CL1-5 cells, the overexpression of UCP-2 with complementary DNA (cDNA) blocked Stat3 activation. In lung cancer patients, low UCP-2 expression in cancer cells was a predictor of a poor response to chemotherapy. Therefore, UCP-2 modulates the ROS/Stat3 signaling pathway and response to chemotherapy treatment in lung cancer cells. Targeting UCP-2, ROS and Stat3 pathways may improve anticancer therapies.


Assuntos
Adenocarcinoma/patologia , Apoptose/efeitos dos fármacos , Canais Iônicos/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Mitocondriais/metabolismo , Paclitaxel/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cisplatino/farmacologia , Humanos , Técnicas Imunoenzimáticas , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Taxa de Sobrevida , Proteína Desacopladora 2
15.
Organogenesis ; 18(1): 2131357, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36259540

RESUMO

Antibody-mediated rejection (ABMR) is the major cause of chronic allograft dysfunction and loss in kidney transplantation. The immunological mechanisms of ABMR that have been featured in the latest studies indicate a highly complex interplay between various immune and nonimmune cell types. Clinical diagnostic standards have long been criticized for being arbitrary and the lack of accuracy. Transcriptomic approaches, including microarray and RNA sequencing of allograft biopsies, enable the identification of differential gene expression and the continuous improvement of diagnostics. Given that conventional bulk transcriptomic approaches only reflect the average gene expression but not the status at the single-cell level, thereby ignoring the heterogeneity of the transcriptome across individual cells, single-cell RNA sequencing is rising as a powerful tool to provide a high-resolution transcriptome map of immune cells, which allows the elucidation of the pathogenesis and may facilitate the development of novel strategies for clinical treatment of ABMR.


Assuntos
Transplante de Rim , Transplante de Rim/efeitos adversos , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/patologia , Transcriptoma , Anticorpos/genética , Transplante Homólogo , Rim
16.
BMC Cancer ; 11: 139, 2011 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-21496277

RESUMO

BACKGROUND: A cross-talk between different receptor tyrosine kinases (RTKs) plays an important role in the pathogenesis of human cancers. METHODS: Both NIH-Met5 and T24-Met3 cell lines harboring an inducible human c-Met gene were established. C-Met-related RTKs were screened by RTK microarray analysis. The cross-talk of RTKs was demonstrated by Western blotting and confirmed by small interfering RNA (siRNA) silencing, followed by elucidation of the underlying mechanism. The impact of this cross-talk on biological function was demonstrated by Trans-well migration assay. Finally, the potential clinical importance was examined in a cohort of 65 cases of locally advanced and metastatic bladder cancer patients. RESULTS: A positive association of Axl or platelet-derived growth factor receptor-alpha (PDGFR-α) with c-Met expression was demonstrated at translational level, and confirmed by specific siRNA knock-down. The transactivation of c-Met on Axl or PDGFR-α in vitro was through a ras- and Src-independent activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathway. In human bladder cancer, co-expression of these RTKs was associated with poor patient survival (p < 0.05), and overexpression of c-Met/Axl/PDGFR-α or c-Met alone showed the most significant correlation with poor survival (p < 0.01). CONCLUSIONS: In addition to c-Met, the cross-talk with Axl and/or PDGFR-α also contributes to the progression of human bladder cancer. Evaluation of Axl and PDGFR-α expression status may identify a subset of c-Met-positive bladder cancer patients who may require co-targeting therapy.


Assuntos
Proteína Oncogênica p21(ras)/metabolismo , Proteína Oncogênica pp60(v-src)/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Ativação Transcricional , Neoplasias da Bexiga Urinária/fisiopatologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Células NIH 3T3 , Prognóstico , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-met/genética , Receptores Proteína Tirosina Quinases/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Tetraciclina/farmacologia , Ativação Transcricional/efeitos dos fármacos , Neoplasias da Bexiga Urinária/mortalidade , Receptor Tirosina Quinase Axl
17.
World J Gastroenterol ; 27(26): 4104-4142, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34326614

RESUMO

The population of patients with hepatocellular carcinoma (HCC) overlaps to a high degree with those for chronic kidney disease (CKD) and end-stage renal disease (ESRD). The degrees of renal dysfunction vary, from the various stages of CKD to dialysis-dependent ESRD, which often affects the prognosis and treatment choice of patients with HCC. In addition, renal dysfunction makes treatment more difficult and may negatively affect treatment outcomes. This study summarized the possible causes of the high comorbidity of HCC and renal dysfunction. The possible mechanisms of CKD causing HCC involve uremia itself, long-term dialysis status, immunosuppressive agents for postrenal transplant status, and miscellaneous factors such as hormone alterations and dysbiosis. The possible mechanisms of HCC affecting renal function include direct tumor invasion and hepatorenal syndrome. Finally, we categorized the risk factors that could lead to both HCC and CKD into four categories: Environmental toxins, viral hepatitis, metabolic syndrome, and vasoactive factors. Both CKD and ESRD have been reported to negatively affect HCC prognosis, but more research is warranted to confirm this. Furthermore, ESRD status itself ought not to prevent patients receiving aggressive treatments. This study then adopted the well-known Barcelona Clinic Liver Cancer guidelines as a framework to discuss the indicators for each stage of HCC treatment, treatment-related adverse renal effects, and concerns that are specific to patients with pre-existing renal dysfunction when undergoing aggressive treatments against CKD and ESRD. Such aggressive treatments include liver resection, simultaneous liver kidney transplantation, radiofrequency ablation, and transarterial chemoembolization. Finally, focusing on patients unable to receive active treatment, this study compiled information on the latest systemic pharmacological therapies, including targeted and immunotherapeutic drugs. Based on available clinical studies and Food and Drug Administration labels, this study details the drug indications, side effects, and dose adjustments for patients with renal dysfunction. It also provides a comprehensive review of information on HCC patients with renal dysfunction from disease onset to treatment.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Falência Renal Crônica , Neoplasias Hepáticas , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/terapia , Prognóstico
18.
Biomed Res Int ; 2021: 7408497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631887

RESUMO

In patients of oral cavity or oropharyngeal cancers, resection of the tumor and reconstruction of the defect may reduce the framework, add a bulky flap, alter the tissue flexibility, and contribute to postoperative obstructive sleep apnea (OSA). Postoperative OSA and the potential consequences may decrease the survival rate and reduce patients' quality of life. It is unclear whether the surgery is associated with postoperative OSA. Here, we compared the polysomnographies (PSGs) before and after the surgery in 15 patients of oral cavity or oropharyngeal cancers (out of 68 patients of head and neck cancers) without a chemo- or radio-therapy. Each patient received the second PSG before the start of any indicated adjuvant therapy to prevent its interference. There were 14 men and 1 woman, with a mean age and a standard deviation (SD, same in the following) of 56.2 ± 12.8 years. There were 6 tongue cancers, 5 buccal cancers, 2 tonsil cancer, 1 lower gum cancer, and 1 trigone cancer. The results show that the surgery changed sleep parameters insignificantly in apnea-hypopnea index (AHI), mean oxyhemoglobin saturation of pulse oximetry (SpO2), minimum SpO2, mean desaturation, and desaturation index but increased mean heart rate in the patients with free flaps. These results hint that the effect of surgery on developing OSA was small in this sample, with a longer plate or a larger framework for a bulkier free flap. It needs future studies with a large sample size to generalize this first observation.


Assuntos
Neoplasias Bucais/fisiopatologia , Neoplasias Bucais/cirurgia , Neoplasias Orofaríngeas/fisiopatologia , Neoplasias Orofaríngeas/cirurgia , Sono/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oximetria , Saturação de Oxigênio , Oxiemoglobinas
19.
Mol Cancer ; 9: 309, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21122157

RESUMO

BACKGROUND: Spontaneous interleukin-6 (IL-6) production has been observed in various tumors and implicated in the pathogenesis, progression and drug resistance in cancer. However, the regulation of IL-6 autocrine production in cancer cells is not fully understood. IL-6 is auto-regulated in many types of cell. Two of the three major downstream pathways of IL-6, MEK/extracellular signal-related kinase (Erk) pathway and phosphatidylinositol 3-kinase (PI3-K)/Akt pathway, have been shown to regulate IL-6 expression through the activation of AP-1 and NF-κB. However, it is not clear what the role of Janus kinase (Jak) 2/signal transducer and activator of transcription (Stat) 3 pathway. This study was designed to determine the role of Jak2/Stat3 pathway in the regulation of IL-6 autocrine production in cancer cells. RESULTS: Inhibitors of Jak2/Stat3, MEK/Erk and PI3-K/Akt pathways down-regulated IL-6 secretion in the lung adenocarcinoma PC14PE6/AS2 (AS2) cells, which spontaneously secreted IL-6 and possessed constitutively activated Stat3. Transfection with dominant-negative Stat3, Stat3 siRNA, or Stat3 shRNA decreased IL-6 expression in AS2 cells. Conversely, transfection with constitutively-activated Stat3 increased the production of IL-6. In AS2 derived cells, resistance to paclitaxel was positively correlated with Stat3 activation status and the expression of IL-6, which is commonly secreted in drug resistant cancer cells. The pharmacological inhibition of NF-κB, PI3-K/Akt and MEK/Erk and the pharmacological inhibition and genetic inhibition (Stat3 siRNA) of Jak2/Stat3 pathway decreased IL-6 autocrine production in various drug resistant cancer cell lines and similarly decreased IL-6 autocrine production in clinically isolated lung cancer cells. CONCLUSIONS: This study is the first to directly address the role Stat3 plays on the autocrine production of IL-6, which occurs through a positive-feedback loop. Our biochemical and genetic studies clearly demonstrated that Jak2/Stat3, in combination with other IL-6 downstream pathways, contributed frequently and substantially to IL-6 autocrine production in a broad spectrum of cancer cell lines as well as in clinical cancer samples. Our findings suggest that Stat3 could potentially be regulated to suppress IL-6 autocrine production in cancer cells to inhibit the progression of cancer and reduce drug resistance.


Assuntos
Interleucina-6/metabolismo , Neoplasias/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Western Blotting , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3 , Transdução de Sinais/genética , Células Tumorais Cultivadas
20.
Ci Ji Yi Xue Za Zhi ; 32(2): 145-153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32269946

RESUMO

Objective: Mucus provides a protective barrier separating sensitive epithelial surfaces from the outside world. The mouse colonic mucus is organized as a bacteria-free inner layer and a bacteria-colonized outer layer. Antibiotic treatments are known to disturb gut microbiota, but their effect on the mucosal barrier is rarely discussed. The aim was to evaluate and visualize the impact of antibiotics on the colonic mucus and the microbial community. Materials and Methods: Two sets of experiments were conducted. In the antibiotic experiment, mice orally ingested both streptomycin and bacitracin for 7 days. In the recovery experiment, mice were allowed to recover for 7 days without antibiotics after having received the 7-day antibiotic treatment. Mouse colons were isolated and divided into proximal, middle, and distal parts. Specimens were examined under a transmission electron microscope to identify morphological changes. The gut microbial community was evaluated by analyzing 16S rDNA sequences isolated from the different parts of the mouse colon. Results: The antibiotic-treated mice were physiologically normal. However, a significantly increased inner mucus layer in the proximal and middle colon and a dramatic decrease in bacterial numbers in the outer mucus layers were observed. The 16S rDNA compositions showed a similarity in the dominant taxa among different colon sections. While control mice had a diverse microbiota, antibiotic treatments effectively eliminated most of the bacteria, such that the community was dominated by only one genus (Turicibacter or Staphylococcus). Furthermore, following antibiotic withdrawal in treated mice, the thickness of the inner mucus layer returned to control levels, and the microbial community regained a more complex structure, dominated by Firmicutes, Bacteroidetes, and Proteobacteria. Conclusions: Our results indicated that antibiotic treatments not only disturbed the microbiota but also altered the structure of the mucus layer. After the withdrawal of antibiotics, the mucus layer was quickly regenerated within days, probably in response to microbial growth. The recolonization by gut inhabitants with diverse ecological roles, such as mucin-degraders and fermenters indicate that the gut ecosystem is functionally sound and highly resilient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA