Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Angew Chem Int Ed Engl ; 62(3): e202211704, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36349405

RESUMO

Endohedral metallofullerenes (EMFs) are excellent carriers of rare-earth element (REE) ions in biomedical applications because they preclude the release of toxic metal ions. However, existing approaches to synthesize water-soluble EMF derivatives yield mixtures that inhibit precise drug design. Here we report the synthesis of metallobuckytrio (MBT), a three-buckyball system, as a modular platform to develop structurally defined water-soluble EMF derivatives with ligands by choice. Demonstrated with PEG ligands, the resulting water-soluble MBTs show superb biocompatibility. The Gd MBTs exhibit superior T1 relaxivity than typical Gd complexes, potentially superseding current clinical MRI contrast agents in both safety and efficiency. The Lu MBTs generated reactive oxygen species upon light irradiation, showing promise as photosensitizers. With their modular nature to incorporate other ligands, we anticipate the MBT platform to open new paths towards bio-specific REE drugs.


Assuntos
Fulerenos , Ligantes , Meios de Contraste
2.
J Am Chem Soc ; 141(39): 15634-15640, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31479248

RESUMO

We report a new HxCrS2-based crystalline/amorphous layered material synthesized by soft chemical methods. We study the structural nature and composition of this material with atomic resolution scanning transmission electron microscopy (STEM), revealing a complex structure consisting of alternating layers of amorphous and crystalline lamellae. Furthermore, the magnetic properties show evidence for increased magnetic frustration compared to the parent compound NaCrS2. Finally, we show that this material can be exfoliated, thus providing a facile synthesis method for chromium-sulfide-based ultrathin layers. The material reported herein can not only be a source of new thin TMD-related sheets for potential application in catalysis but also be of interest for realizing new 2D magnetic materials.

3.
Phys Chem Chem Phys ; 19(47): 31545-31552, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29134993

RESUMO

A new catalyst is presented for the oxygen evolution reaction (OER) based on cerium-modified copper oxide (CuOx) prepared using a facile electrodeposition procedure. Incorporation of Ce into CuOx leads to greatly improved OER activity, which reached an optimal value at a surface concentration of 6.9 at% Ce. Specifically, the OER current density at 400 mV overpotential for the most active Ce-modified CuOx catalyst (6.9 at% Ce) was 3.3 times greater compared to the pure CuOx. Coincident with the improved OER activity, Ce incorporation also leads to significant structural changes that manifested in increasing degrees of disorder. A further increase in the Ce concentration led to a decrease in the OER performance which can be attributed to the formation of a segregated CeO2 phase. A strong correlation was observed between the OER performance and tetravalent Ce (Ce4+) ion concentration, up to a concentration corresponding to CeO2 phase segregation. No particular trend was observed for the OER activity of these Ce-modified CuOx catalysts with respect to the surface concentration of Cu ions, surface oxygen species or catalyst structure. The stability of these CuOx catalysts at 5 mA cm-2 was also improved with Ce incorporation, and the overpotential required to sustain this current density is much lower than that of pure CuOx. Overall, this study provides new insights regarding the promoting effect of tetravalent Ce ions on the OER activity of CuOx-based OER catalysts in alkaline electrolytes.

4.
Nano Lett ; 15(8): 5321-9, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26042472

RESUMO

The development of methods for achieving precise spatiotemporal control over chemical and biomolecular gradients could enable significant advances in areas such as synthetic tissue engineering, biotic-abiotic interfaces, and bionanotechnology. Living organisms guide tissue development through highly orchestrated gradients of biomolecules that direct cell growth, migration, and differentiation. While numerous methods have been developed to manipulate and implement biomolecular gradients, integrating gradients into multiplexed, three-dimensional (3D) matrices remains a critical challenge. Here we present a method to 3D print stimuli-responsive core/shell capsules for programmable release of multiplexed gradients within hydrogel matrices. These capsules are composed of an aqueous core, which can be formulated to maintain the activity of payload biomolecules, and a poly(lactic-co-glycolic) acid (PLGA, an FDA approved polymer) shell. Importantly, the shell can be loaded with plasmonic gold nanorods (AuNRs), which permits selective rupturing of the capsule when irradiated with a laser wavelength specifically determined by the lengths of the nanorods. This precise control over space, time, and selectivity allows for the ability to pattern 2D and 3D multiplexed arrays of enzyme-loaded capsules along with tunable laser-triggered rupture and release of active enzymes into a hydrogel ambient. The advantages of this 3D printing-based method include (1) highly monodisperse capsules, (2) efficient encapsulation of biomolecular payloads, (3) precise spatial patterning of capsule arrays, (4) "on the fly" programmable reconfiguration of gradients, and (5) versatility for incorporation in hierarchical architectures. Indeed, 3D printing of programmable release capsules may represent a powerful new tool to enable spatiotemporal control over biomolecular gradients.


Assuntos
Preparações de Ação Retardada/química , Ouro/química , Ácido Láctico/química , Nanotubos/química , Ácido Poliglicólico/química , Impressão Tridimensional , Cápsulas/química , Nanotubos/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
5.
Nano Lett ; 13(6): 2393-8, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23634729

RESUMO

Piezoelectric nanocomposites represent a unique class of materials that synergize the advantageous features of polymers and piezoelectric nanostructures and have attracted extensive attention for the applications of energy harvesting and self-powered sensing recently. Currently, most of the piezoelectric nanocomposites were synthesized using piezoelectric nanostructures with relatively low piezoelectric constants, resulting in lower output currents and lower output voltages. Here, we report a synthesis of piezoelectric (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) nanowire-based nanocomposite with significantly improved performances for energy harvesting and self-powered sensing. With the high piezoelectric constant (d33) and the unique hierarchical structure of the PMN-PT nanowires, the PMN-PT nanowire-based nanocomposite demonstrated an output voltage up to 7.8 V and an output current up to 2.29 µA (current density of 4.58 µA/cm(2)); this output voltage is more than double that of other reported piezoelectric nanocomposites, and the output current is at least 6 times greater. The PMN-PT nanowire-based nanocomposite also showed a linear relationship of output voltage versus strain with a high sensitivity. The enhanced performance and the flexibility of the PMN-PT nanowire-based nanocomposite make it a promising building block for energy harvesting and self-powered sensing applications.

6.
Nano Lett ; 13(12): 6197-202, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24274657

RESUMO

Piezoelectric nanowires are an important class of smart materials for next-generation applications including energy harvesting, robotic actuation, and bioMEMS. Lead zirconate titanate (PZT), in particular, has attracted significant attention, owing to its superior electromechanical conversion performance. Yet, the ability to synthesize crystalline PZT nanowires with well-controlled properties remains a challenge. Applications of common nanosynthesis methods to PZT are hampered by issues such as slow kinetics, lack of suitable catalysts, and harsh reaction conditions. Here we report a versatile biomimetic method, in which biotemplates are used to define PZT nanostructures, allowing for rational control over composition and crystallinity. Specifically, stoichiometric PZT nanowires were synthesized using both polysaccharide (alginate) and bacteriophage templates. The wires possessed measured piezoelectric constants of up to 132 pm/V after poling, among the highest reported for PZT nanomaterials. Further, integrated devices can generate up to 0.820 µW/cm(2) of power. These results suggest that biotemplated piezoelectric nanowires are attractive candidates for stimuli-responsive nanosensors, adaptive nanoactuators, and nanoscale energy harvesters.


Assuntos
Chumbo/química , Sistemas Microeletromecânicos , Nanofios/química , Titânio/química , Zircônio/química , Bacteriófagos/química , Fontes de Energia Bioelétrica , Nanoestruturas/química , Polissacarídeos/química
7.
Sci Adv ; 9(12): eadd6167, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947621

RESUMO

Liquid-phase chemical exfoliation can achieve industry-scale production of two-dimensional (2D) materials for a wide range of applications. However, many 2D materials with potential applications in quantum technologies often fail to leave the laboratory setting because of their air sensitivity and depreciation of physical performance after chemical processing. We report a simple chemical exfoliation method to create a stable, aqueous, surfactant-free, superconducting ink containing phase-pure 1T'-WS2 monolayers that are isostructural to the air-sensitive topological insulator 1T'-WTe2. The printed film is metallic at room temperature and superconducting below 7.3 kelvin, shows strong anisotropic unconventional superconducting behavior with an in-plane and out-of-plane upper critical magnetic field of 30.1 and 5.3 tesla, and is stable at ambient conditions for at least 30 days. Our results show that chemical processing can make nontrivial 2D materials that were formerly only studied in laboratories commercially accessible.

8.
Small Methods ; 6(7): e2200519, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35680607

RESUMO

A hierarchically ordered porous carbon electrocatalyst with exclusively surface-anchored cobalt species, dubbed Co@HOPC, is synthesized from polyaniline and cobalt-functionalized silica microparticles templates, and its high electrocatalytic activity for the oxygen evolution reaction (OER) is demonstrated. The material requires a small potential (320 mV) to drive the reaction with a current density of 10 mA cm-2 and a small Tafel slope of 31.2 mV dec-1 . Moreover, Co@HOPC shows better catalytic activity for OER than in situ cobalt-doped and surface cobalt-loaded hierarchically ordered porous carbon materials synthesized by traditional methods. This is due to the abundant surface cobalt species present in Co@HOPC and the material's good electrical conductivity. This work provides a new strategy to utilize functionalized silica microparticles as templates to synthesize hierarchically ordered porous carbon materials with metal-rich surfaces and efficient electrocatalytic activities.

9.
ACS Appl Mater Interfaces ; 11(18): 16888-16895, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30990647

RESUMO

The piezoresistive response of PEDOT:PSS is sensitive to changes in its morphology when exposed to humidity and in response to different strain rates. The piezoresistive response of as-cast PEDOT:PSS transitions from being in-phase to being out-of-phase with applied strain when the relative humidity is reduced from >50% to near zero. At >50% relative humidity, the PSS matrix swells and interrupts the connectivity of electrically conducting PEDOT domains. Stretching PEDOT:PSS at such conditions leads to an increase in resistance with strain. Under dry conditions, PEDOT domains are connected; stretching PEDOT:PSS instead leads to preferential alignment of the conducting domains and a concomitant decrease in resistance. At intermediate humidity, the piezoresistive response of PEDOT:PSS is phase shifted relative to applied strain, with it being out-of-phase at low strain rates (0.34%/min) and in-phase at high strain rates (1.12%/min). We interpret this peculiar and surprising observation as a competition between strain-induced domain separation and alignment, each having a different response time to applied strain. Postdeposition treatment of PEDOT:PSS with dichloroacetic acid removes excess PSS; PEDOT:PSS's piezoresistive response is then invariant with humidity and strain rate. Stabilizing its piezoresistive response can ensure accuracy of PEDOT:PSS-based flexible resistive sensors whose response to small strains is used to monitor environmental and human-health.

10.
Nat Commun ; 10(1): 1543, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948708

RESUMO

Development of earth-abundant electrocatalysts for hydrogen evolution and oxidation reactions in strong acids represents a great challenge for developing high efficiency, durable, and cost effective electrolyzers and fuel cells. We report herein that hafnium oxyhydroxide with incorporated nitrogen by treatment using an atmospheric nitrogen plasma demonstrates high catalytic activity and stability for both hydrogen evolution and oxidation reactions in strong acidic media using earth-abundant materials. The observed properties are especially important for unitized regenerative fuel cells using polymer electrolyte membranes. Our results indicate that nitrogen-modified hafnium oxyhydroxide could be a true alternative for platinum as an active and stable electrocatalyst, and furthermore that nitrogen plasma treatment may be useful in activating other non-conductive materials to form new active electrocatalysts.

11.
Nanoscale ; 10(47): 22223-22230, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30239542

RESUMO

We have synthesized boron nitride nanotubes (BNNTs) in an arc in the presence of boron and nitrogen species. We find that BNNTs are often attached to large nanoparticles, suggesting that root-growth is a likely mechanism for their formation. Moreover, the tube-end nanoparticles are composed of boron, without transition metals, indicating that transition metals are not necessary for the arc synthesis of BNNTs. To gain further insight into this process we have studied key mechanisms for root growth of BNNTs on the surface of a liquid boron droplet by ab initio molecular dynamics simulations. We find that nitrogen atoms reside predominantly on the droplet surface where they organize to form boron nitride islands below 2400 K. To minimize contact with the liquid particle underneath, the islands assume non-planar configurations that are likely precursors for the thermal nucleation of cap structures. Once formed, the caps are stable and can easily incorporate nitrogen and boron atoms at their base, resulting in further growth. Our simulations support the root-growth mechanism of BNNTs and provide comprehensive evidence of the active role played by liquid boron.

12.
Sci Rep ; 7(1): 3075, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596538

RESUMO

Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. To sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of ~100 A/cm2, is above the boron melting point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. Stable and reliable arc operation and arc synthesis were achieved with the boron-rich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. The results also show evidence of root-growth of BNNTs produced in the arc discharge.

13.
ACS Nano ; 11(12): 12247-12256, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29200259

RESUMO

Extremely low energy consumption neuromorphic computing is required to achieve massively parallel information processing on par with the human brain. To achieve this goal, resistive memories based on materials with ionic transport and extremely low operating current are required. Extremely low operating current allows for low power operation by minimizing the program, erase, and read currents. However, materials currently used in resistive memories, such as defective HfOx, AlOx, TaOx, etc., cannot suppress electronic transport (i.e., leakage current) while allowing good ionic transport. Here, we show that 2D Ruddlesden-Popper phase hybrid lead bromide perovskite single crystals are promising materials for low operating current nanodevice applications because of their mixed electronic and ionic transport and ease of fabrication. Ionic transport in the exfoliated 2D perovskite layer is evident via the migration of bromide ions. Filaments with a diameter of approximately 20 nm are visualized, and resistive memories with extremely low program current down to 10 pA are achieved, a value at least 1 order of magnitude lower than conventional materials. The ionic migration and diffusion as an artificial synapse is realized in the 2D layered perovskites at the pA level, which can enable extremely low energy neuromorphic computing.

14.
Adv Mater ; 29(24)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28437033

RESUMO

Organic-inorganic hybrid perovskite materials are emerging as semiconductors with potential application in optoelectronic devices. In particular, perovskites are very promising for light-emitting devices (LEDs) due to their high color purity, low nonradiative recombination rates, and tunable bandgap. Here, using pure CH3 NH3 PbI3 perovskite LEDs with an external quantum efficiency (EQE) of 5.9% as a platform, it is shown that electrical stress can influence device performance significantly, increasing the EQE from an initial 5.9% to as high as 7.4%. Consistent with the enhanced device performance, both the steady-state photoluminescence (PL) intensity and the time-resolved PL decay lifetime increase after electrical stress, indicating a reduction in nonradiative recombination in the perovskite film. By investigating the temperature-dependent characteristics of the perovskite LEDs and the cross-sectional elemental depth profile, it is proposed that trap reduction and resulting device-performance enhancement is due to local ionic motion of excess ions, likely excess mobile iodide, in the perovskite film that fills vacancies and reduces interstitial defects. On the other hand, it is found that overstressed LEDs show irreversibly degraded device performance, possibly because ions initially on the perovskite lattice are displaced during extended electrical stress and create defects such as vacancies.

15.
ACS Nano ; 11(4): 3957-3964, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28332818

RESUMO

Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation. Here, we demonstrate a facile method for preparing perovskite nanocrystal films in situ and that the electroluminescence of light-emitting devices can be enhanced up to 40-fold through this nanocrystal film formation strategy. Briefly, the method involves the use of bulky organoammonium halides as additives to confine crystal growth of perovskites during film formation, achieving CH3NH3PbI3 and CH3NH3PbBr3 perovskite nanocrystals with an average crystal size of 5.4 ± 0.8 nm and 6.4 ± 1.3 nm, respectively, as confirmed through transmission electron microscopy measurements. Additive-confined perovskite nanocrystals show significantly improved photoluminescence quantum yield and decay lifetime. Finally, we demonstrate highly efficient CH3NH3PbI3 red/near-infrared LEDs and CH3NH3PbBr3 green LEDs based on this strategy, achieving an external quantum efficiency of 7.9% and 7.0%, respectively, which represent a 40-fold and 23-fold improvement over control devices fabricated without the additives.

16.
Sci Rep ; 6: 22513, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26928788

RESUMO

Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs.

17.
Chem Commun (Camb) ; 50(65): 9056-9, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24874809

RESUMO

A facile one-pot Stöber route is used to synthesize high-quality Ag, AgBr-silica-resorcinol formaldehyde polymer core-shell-shell nanospheres. The obtained core-shell-shell templates can be converted to Ag@carbon yolk-shell nanostructures with tunable dimensions.

18.
Adv Mater ; 25(7): 946-74, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23293034

RESUMO

Electromechanical effects are ubiquitous in biological and materials systems. Understanding the fundamentals of these coupling phenomena is critical to devising next-generation electromechanical transducers. Piezoelectricity has been studied in detail, in both the bulk and at mesoscopic scales. Recently, an increasing amount of attention has been paid to flexoelectricity: electrical polarization induced by a strain gradient. While piezoelectricity requires crystalline structures with no inversion symmetry, flexoelectricity does not carry this requirement, since the effect is caused by inhomogeneous strains. Flexoelectricity explains many interesting electromechanical behaviors in hard crystalline materials and underpins core mechanoelectric transduction phenomena in soft biomaterials. Most excitingly, flexoelectricity is a size-dependent effect which becomes more significant in nanoscale systems. With increasing interest in nanoscale and nano-bio hybrid materials, flexoelectricity will continue to gain prominence. This Review summarizes work in this area. First, methods to amplify or manipulate the flexoelectric effect to enhance material properties will be investigated, particularly at nanometer scales. Next, the nature and history of these effects in soft biomaterials will be explored. Finally, some theoretical interpretations for the effect will be presented. Overall, flexoelectricity represents an exciting phenomenon which is expected to become more considerable as materials continue to shrink.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA