Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
ACS Earth Space Chem ; 6(5): 1221-1226, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35620317

RESUMO

Wet-dry cycles driven by heating to high temperatures are frequently invoked for the prebiotic synthesis of peptides. Similarly, iron-sulfur clusters are often cited as an example of an ancient catalyst that helped prune early chemical systems into metabolic-like pathways. Because extant iron-sulfur clusters are metallocofactors of protein enzymes and nearly ubiquitous across biology, a reasonable hypothesis is that prebiotic iron-sulfur peptides formed on the early Earth. However, iron-sulfur clusters are coordinated by multiple cysteine residues, and the stability of cysteines to the heat steps of wet-dry cycles has not been determined. It, therefore, has remained unclear if the peptides needed to stabilize the formation of iron-sulfur clusters could have formed. If not, then iron-sulfur-dependent activity may have emerged later, when milder, more biological-like peptide synthesis machinery took hold. Here, we report the thermal stability of cysteine-containing peptides. We show that temperatures of 150 °C lead to the rapid degradation of cysteinyl peptides. However, the presence of Mg2+ at environmentally reasonable concentrations leads to significant protection. Thiophilic metal ions also protect against degradation at 150 °C but require concentrations not frequently observed in the environment. Nevertheless, cysteine-containing peptides are stable at lower, prebiotically plausible temperatures in seawater, carbonate lake, and ferrous lake conditions. The data are consistent with the persistence of cysteine-containing peptides on the early Earth in environments rich in metal ions. High concentrations of Mg2+ are common intra- and extra-cellularly, suggesting that the protection afforded by Mg2+ may reflect conditions that were present on the prebiotic Earth.

2.
Emerg Top Life Sci ; 3(5): 597-607, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33523164

RESUMO

Chemical communication is ubiquitous in biology, and so efforts in building convincing cellular mimics must consider how cells behave on a population level. Simple model systems have been built in the laboratory that show communication between different artificial cells and artificial cells with natural, living cells. Examples include artificial cells that depend on purely abiological components and artificial cells built from biological components and are driven by biological mechanisms. However, an artificial cell solely built to communicate chemically without carrying the machinery needed for self-preservation cannot remain active for long periods of time. What is needed is to begin integrating the pathways required for chemical communication with metabolic-like chemistry so that robust artificial systems can be built that better inform biology and aid in the generation of new technologies.

3.
PLoS One ; 14(4): e0206336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30951522

RESUMO

Yra1 is an mRNA export adaptor involved in mRNA biogenesis and export in S. cerevisiae. Yra1 overexpression was recently shown to promote accumulation of DNA:RNA hybrids favoring DNA double strand breaks (DSB), cell senescence and telomere shortening, via an unknown mechanism. Yra1 was also identified at an HO-induced DSB and Yra1 depletion causes defects in DSB repair. Previous work from our laboratory showed that Yra1 ubiquitination by Tom1 is important for mRNA export. Here, we found that Yra1 is also ubiquitinated by the SUMO-targeted ubiquitin ligases Slx5-Slx8 implicated in the interaction of irreparable DSB with nuclear pores. We further show that Yra1 binds an HO-induced irreparable DSB in a process dependent on resection. Importantly, a Yra1 mutant lacking the evolutionarily conserved C-box is not recruited to an HO-induced irreparable DSB and becomes lethal under DSB induction in a HO-cut reparable system. Together, the data provide evidence that Yra1 plays a crucial role in DSB repair via homologous recombination. While Yra1 sumoylation and/or ubiquitination are dispensable, the Yra1 C-box region is essential in this process.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Fúngico/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Fúngico/genética , Proteínas Nucleares/genética , Domínios Proteicos , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
ACS Synth Biol ; 6(4): 638-647, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28100049

RESUMO

Although RNA synthesis can be reliably controlled with different T7 transcriptional promoters during cell-free gene expression with the PURE system, protein synthesis remains largely unaffected. To better control protein levels, we investigated a series of ribosome binding sites (RBSs). Although RBS strength did strongly affect protein synthesis, the RBS sequence could explain less than half of the variability of the data. Protein expression was found to depend on other factors besides the strength of the RBS, including the GC content of the coding sequence. The complexity of protein synthesis in comparison to RNA synthesis was observed by the higher degree of variability associated with protein expression. This variability was also observed in an E. coli cell extract-based system. However, the coefficient of variation was larger with E. coli RNA polymerase than with T7 RNA polymerase, consistent with the increased complexity of E. coli RNA polymerase.


Assuntos
Sistema Livre de Células/metabolismo , RNA/metabolismo , Transcrição Gênica , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Fotodegradação , Biossíntese de Proteínas , Proteínas/metabolismo , RNA/química , Dobramento de RNA , Ribossomos/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteína Vermelha Fluorescente
5.
Curr Opin Chem Biol ; 34: 53-61, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27352299

RESUMO

Intercellular chemical communication is commonly exploited for the engineering of living cells but has been largely ignored by efforts to build artificial cells. Since communication is a fundamental feature of life, the construction of artificial cells capable of chemical communication will likely lead to a deeper understanding of biology and allow for the development of life-like technologies. Herein we highlight recent progress towards the construction of artificial systems that are capable of chemically communicating with natural living cells. Artificial systems that exploit both biological and abiological material for function are discussed.


Assuntos
Células Artificiais , Comunicação Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA