Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Neuroimage ; 264: 119653, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257490

RESUMO

The variations in cellular composition and tissue architecture measured with histology provide the biological basis for partitioning the brain into distinct cytoarchitectonic areas and for characterizing neuropathological tissue alterations. Clearly, there is an urgent need to develop whole-brain neuroradiological methods that can assess cortical cyto- and myeloarchitectonic features non-invasively. Mean apparent propagator (MAP) MRI is a clinically feasible diffusion MRI method that quantifies efficiently and comprehensively the net microscopic displacements of water molecules diffusing in tissues. We investigate the sensitivity of high-resolution MAP-MRI to detecting areal and laminar variations in cortical cytoarchitecture and compare our results with observations from corresponding histological sections in the entire brain of a rhesus macaque monkey. High-resolution images of MAP-derived parameters, in particular the propagator anisotropy (PA), non-gaussianity (NG), and the return-to-axis probability (RTAP) reveal cortical area-specific lamination patterns in good agreement with the corresponding histological stained sections. In a few regions, the MAP parameters provide superior contrast to the five histological stains used in this study, delineating more clearly boundaries and transition regions between cortical areas and laminar substructures. Throughout the cortex, various MAP parameters can be used to delineate transition regions between specific cortical areas observed with histology and to refine areal boundaries estimated using atlas registration-based cortical parcellation. Using surface-based analysis of MAP parameters we quantify the cortical depth dependence of diffusion propagators in multiple regions-of-interest in a consistent and rigorous manner that is largely independent of the cortical folding geometry. The ability to assess cortical cytoarchitectonic features efficiently and non-invasively, its clinical feasibility, and translatability make high-resolution MAP-MRI a promising 3D imaging tool for studying whole-brain cortical organization, characterizing abnormal cortical development, improving early diagnosis of neurodegenerative diseases, identifying targets for biopsies, and complementing neuropathological investigations.


Assuntos
Mapeamento Encefálico , Processamento de Imagem Assistida por Computador , Animais , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Macaca mulatta , Imageamento por Ressonância Magnética/métodos , Encéfalo
2.
Cereb Cortex ; 31(1): 439-447, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901254

RESUMO

Cortical lesions are a primary driver of disability in multiple sclerosis (MS). However, noninvasive detection of cortical lesions with in vivo magnetic resonance imaging (MRI) remains challenging. Experimental autoimmune encephalomyelitis (EAE) in the common marmoset is a relevant animal model of MS for investigating the pathophysiological mechanisms leading to brain damage. This study aimed to characterize cortical lesions in marmosets with EAE using ultrahigh-field (7 T) MRI and histological analysis. Tissue preparation was optimized to enable the acquisition of high-spatial resolution (50-µm isotropic) T2*-weighted images. A total of 14 animals were scanned in this study, and 70% of the diseased animals presented at least one cortical lesion on postmortem imaging. Cortical lesions identified on MRI were verified with myelin proteolipid protein immunostaining. An optimized T2*-weighted sequence was developed for in vivo imaging and shown to capture 65% of cortical lesions detected postmortem. Immunostaining confirmed extensive demyelination with preserved neuronal somata in several cortical areas of EAE animals. Overall, this study demonstrates the relevance and feasibility of the marmoset EAE model to study cortical lesions, among the most important yet least understood features of MS.


Assuntos
Lesões Encefálicas/patologia , Encéfalo/patologia , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/patologia , Animais , Criança , Pré-Escolar , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Técnicas Histológicas/métodos , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos
3.
Neuroimage ; 217: 116875, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32335262

RESUMO

Corpus callosum dysgenesis (CCD) is a developmental brain condition in which some white matter fibers fail to find their natural course across the midplane, reorganizing instead to form new aberrant pathways. This type of white matter reorganization is known as long-distance plasticity (LDP). The present work aimed to characterize the Balb/c mouse strain as a model of CCD. We employed high-resolution anatomical MRI in 81 Balb/c and 27 C57bl6 mice to show that the Balb/c mouse strain presents a variance in the size of the CC that is 3.9 times higher than the variance of normotypical C57bl6. We also performed high-resolution diffusion-weighted imaging (DWI) in 8 Balb/c and found that the Balb/c strain shows aberrant white matter bundles, such as the Probst (5/8 animals) and the Sigmoid bundles (7/8 animals), which are similar to those found in humans with CCD. Using a histological tracer technique, we confirmed the existence of these aberrant bundles in the Balb/c strain. Interestingly, we also identified sigmoid-like fibers in the C57bl6 strain, thought to a lesser degree. Next, we used a connectome approach and found widespread brain connectivity differences between Balb/c and C57bl6 strains. The Balb/c strain also exhibited increased variability of global connectivity. These findings suggest that the Balb/c strain presents local and global changes in brain structural connectivity. This strain often presents with callosal abnormalities, along with the Probst and the Sigmoid bundles, making it is an attractive animal model for CCD and LDP in general. Our results also show that even the C57bl6 strain, which typically serves as a normotypical control animal in a myriad of studies, presents sigmoid-fashion pattern fibers laid out in the brain. These results suggest that these aberrant fiber pathways may not necessarily be a pathological hallmark, but instead an alternative roadmap for misguided axons. Such findings offer new insights for interpreting the significance of CCD-associated LDP in humans.


Assuntos
Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/fisiopatologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Animais , Conectoma , Corpo Caloso/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fibras Nervosas Mielinizadas/patologia , Especificidade da Espécie , Substância Branca/diagnóstico por imagem
4.
NMR Biomed ; 31(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29285809

RESUMO

Understanding the spatiotemporal features of the hemodynamic response function (HRF) to brain stimulation is essential for the correct application of neuroimaging methods to study brain function. Here, we investigated the spatiotemporal evolution of the blood oxygen level-dependent (BOLD) and cerebral blood volume (CBV) HRF in conscious, awake marmosets (Callithrix jacchus), a New World non-human primate with a lissencephalic brain and with growing use in biomedical research. The marmosets were acclimatized to head fixation and placed in a 7-T magnetic resonance imaging (MRI) scanner. Somatosensory stimulation (333-µs pulses; amplitude, 2 mA; 64 Hz) was delivered bilaterally via pairs of contact electrodes. A block design paradigm was used in which the stimulus duration increased in pseudo-random order from a single pulse up to 256 electrical pulses (4 s). For CBV measurements, 30 mg/kg of ultrasmall superparamagnetic ironoxide particles (USPIO) injected intravenously, were used. Robust BOLD and CBV HRFs were obtained in the primary somatosensory cortex (S1), secondary somatosensory cortex (S2) and caudate at all stimulus conditions. In particular, BOLD and CBV responses to a single 333-µs-long stimulus were reliably measured, and the CBV HRF presented shorter onset time and time to peak than the BOLD HRF. Both the size of the regions of activation and the peak amplitude of the HRFs grew quickly with increasing stimulus duration, and saturated for stimulus durations greater than 1 s. Onset times in S1 and S2 were faster than in caudate. Finally, the fine spatiotemporal features of the HRF in awake marmosets were similar to those obtained in humans, indicating that the continued refinement of awake non-human primate models is essential to maximize the applicability of animal functional MRI studies to the investigation of human brain function.


Assuntos
Callithrix/fisiologia , Volume Sanguíneo Cerebral/fisiologia , Imageamento por Ressonância Magnética , Oxigênio/sangue , Córtex Somatossensorial/fisiologia , Vigília/fisiologia , Aclimatação , Animais , Comportamento Animal , Dextranos/química , Estimulação Elétrica , Cabeça , Hemodinâmica/fisiologia , Nanopartículas de Magnetita/química , Masculino , Fatores de Tempo
5.
Neuroimage ; 162: 86-92, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28830766

RESUMO

The primate auditory cortex is organized into a network of anatomically and functionally distinct processing fields. Because of its tonotopic properties, the auditory core has been the main target of neurophysiological studies ranging from sensory encoding to perceptual decision-making. By comparison, the auditory belt has been less extensively studied, in part due to the fact that neurons in the belt areas prefer more complex stimuli and integrate over a wider frequency range than neurons in the core, which prefer pure tones of a single frequency. Complementary approaches, such as functional magnetic resonance imaging (fMRI), allow the anatomical identification of both the auditory core and belt and facilitate their functional characterization by rapidly testing a range of stimuli across multiple brain areas simultaneously that can be used to guide subsequent neural recordings. Bridging these technologies in primates will serve to further expand our understanding of primate audition. Here, we developed a novel preparation to test whether different areas of the auditory cortex could be identified using fMRI in common marmosets (Callithrix jacchus), a powerful model of the primate auditory system. We used two types of stimulation, band pass noise and pure tones, to parse apart the auditory core from surrounding secondary belt fields. In contrast to most auditory fMRI experiments in primates, we employed a continuous sampling paradigm to rapidly collect data with little deleterious effects. Here we found robust bilateral auditory cortex activation in two marmosets and unilateral activation in a third utilizing this preparation. Furthermore, we confirmed results previously reported in electrophysiology experiments, such as the tonotopic organization of the auditory core and regions activating preferentially to complex over simple stimuli. Overall, these data establish a key preparation for future research to investigate various functional properties of marmoset auditory cortex.


Assuntos
Córtex Auditivo/anatomia & histologia , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Mapeamento Encefálico/métodos , Callithrix , Imageamento por Ressonância Magnética , Masculino
6.
J Neurosci ; 35(3): 1160-72, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25609630

RESUMO

The cerebral cortex of humans and macaques has specialized regions for processing faces and other visual stimulus categories. It is unknown whether a similar functional organization exists in New World monkeys, such as the common marmoset (Callithrix jacchus), a species of growing interest as a primate model in neuroscience. To address this question, we measured selective neural responses in the brain of four awake marmosets trained to fix their gaze upon images of faces, bodies, objects, and control patterns. In two of the subjects, we measured high gamma-range field potentials from electrocorticography arrays implanted over a large portion of the occipital and inferotemporal cortex. In the other two subjects, we measured BOLD fMRI responses across the entire brain. Both techniques revealed robust, regionally specific patterns of category-selective neural responses. We report that at least six face-selective patches mark the occipitotemporal pathway of the marmoset, with the most anterior patches showing the strongest preference for faces over other stimuli. The similar appearance of these patches to previous findings in macaques and humans, including their apparent arrangement in two parallel pathways, suggests that core elements of the face processing network were present in the common anthropoid primate ancestor living ∼35 million years ago. The findings also identify the marmoset as a viable animal model system for studying specialized neural mechanisms related to high-level social visual perception in humans.


Assuntos
Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Mapeamento Encefálico , Callithrix , Face , Neuroimagem Funcional , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa
7.
Neuroimage ; 120: 1-11, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26149609

RESUMO

The visual brain is composed of interconnected subcortical and cortical structures that receive and process image information originating in the retina. The visual system of nonhuman primates, in particular macaques, has been studied in great detail in order to elucidate principles of human sensation and perception. The common marmoset (Callithrix jacchus) is a small New World monkey of growing interest as a primate model for neuroscience. Marmosets have advantages over macaques because of their small size, lissencephalic cortex, and growing potential for viral and genetic manipulations. Previous anatomical studies and electrophysiological recordings in anesthetized marmosets have shown that this species' cortical visual hierarchy closely resembles that of other primates, including humans. Until now, however, there have been no attempts to systematically study visual responses throughout the marmoset brain using fMRI. Here we show that awake marmosets readily learn to carry out a simple visual task inside the bore of an MRI scanner during functional mapping experiments. Functional scanning at 500 µm in-plane resolution in a 30 cm horizontal bore at 7 T revealed robust positive blood oxygenation level-dependent (BOLD) fMRI responses to visual stimuli throughout visual cortex and associated subcortical areas. Nonvisual sensory areas showed negative contrasts to visual stimuli compared to the fixation dot only baseline. Structured images of objects and faces led to stronger responses than scrambled control images at stages beyond early visual cortex. Our study establishes fMRI mapping of visual responses in awake, behaving marmosets as a straightforward and valuable tool for assessing the functional organization of the primate brain at high resolution.


Assuntos
Comportamento Animal/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Callithrix/fisiologia , Imageamento por Ressonância Magnética/métodos , Reconhecimento Visual de Modelos/fisiologia , Animais , Masculino
8.
J Neurosci ; 33(42): 16796-804, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24133280

RESUMO

Resting-state functional MRI is a powerful tool that is increasingly used as a noninvasive method for investigating whole-brain circuitry and holds great potential as a possible diagnostic for disease. Despite this potential, few resting-state studies have used animal models (of which nonhuman primates represent our best opportunity of understanding complex human neuropsychiatric disease), and no work has characterized networks in awake, truly resting animals. Here we present results from a small New World monkey that allows for the characterization of resting-state networks in the awake state. Six adult common marmosets (Callithrix jacchus) were acclimated to light, comfortable restraint using individualized helmets. Following behavioral training, resting BOLD data were acquired during eight consecutive 10 min scans for each conscious subject. Group independent component analysis revealed 12 brain networks that overlap substantially with known anatomically constrained circuits seen in the awake human. Specifically, we found eight sensory and "lower-order" networks (four visual, two somatomotor, one cerebellar, and one caudate-putamen network), and four "higher-order" association networks (one default mode-like network, one orbitofrontal, one frontopolar, and one network resembling the human salience network). In addition to their functional relevance, these network patterns bear great correspondence to those previously described in awake humans. This first-of-its-kind report in an awake New World nonhuman primate provides a platform for mechanistic neurobiological examination for existing disease models established in the marmoset.


Assuntos
Encéfalo/fisiologia , Callithrix/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Descanso/fisiologia , Vigília/fisiologia , Animais , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino
9.
Elife ; 122023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083540

RESUMO

Remyelination is crucial to recover from inflammatory demyelination in multiple sclerosis (MS). Investigating remyelination in vivo using magnetic resonance imaging (MRI) is difficult in MS, where collecting serial short-interval scans is challenging. Using experimental autoimmune encephalomyelitis (EAE) in common marmosets, a model of MS that recapitulates focal cerebral inflammatory demyelinating lesions, we investigated whether MRI is sensitive to, and can characterize, remyelination. In six animals followed with multisequence 7 T MRI, 31 focal lesions, predicted to be demyelinated or remyelinated based on signal intensity on proton density-weighted images, were subsequently assessed with histopathology. Remyelination occurred in four of six marmosets and 45% of lesions. Radiological-pathological comparison showed that MRI had high statistical sensitivity (100%) and specificity (90%) for detecting remyelination. This study demonstrates the prevalence of spontaneous remyelination in marmoset EAE and the ability of in vivo MRI to detect it, with implications for preclinical testing of pro-remyelinating agents.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Remielinização , Animais , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética/métodos , Encefalomielite Autoimune Experimental/patologia , Callithrix , Modelos Animais de Doenças , Bainha de Mielina
10.
Front Neural Circuits ; 14: 612595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408615

RESUMO

The corpus callosum, the principal structural avenue for interhemispheric neuronal communication, controls the brain's lateralization. Developmental malformations of the corpus callosum (CCD) can lead to learning and intellectual disabilities. Currently, there is no clear explanation for these symptoms. Here, we used resting-state functional MRI (rsfMRI) to evaluate the dynamic resting-state functional connectivity (rsFC) in both the cingulate cortex (CG) and the sensory areas (S1, S2, A1) in three marmosets (Callithrix jacchus) with spontaneous CCD. We also performed rsfMRI in 10 CCD human subjects (six hypoplasic and four agenesic). We observed no differences in the strength of rsFC between homotopic CG and sensory areas in both species when comparing them to healthy controls. However, in CCD marmosets, we found lower strength of quasi-periodic patterns (QPP) correlation in the posterior interhemispheric sensory areas. We also found a significant lag of interhemispheric communication in the medial CG, suggesting asynchrony between the two hemispheres. Correspondingly, in human subjects, we found that the CG of acallosal subjects had a higher QPP correlation than controls. In comparison, hypoplasic subjects had a lower QPP correlation and a delay of 1.6 s in the sensory regions. These results show that CCD affects the interhemispheric synchrony of both CG and sensory areas and that, in both species, its impact on cortical communication varies along the CC development gradient. Our study shines a light on how CCD misconnects homotopic regions and opens a line of research to explain the causes of the symptoms exhibited by CCD patients and how to mitigate them.


Assuntos
Encefalopatias/fisiopatologia , Callithrix/fisiologia , Corpo Caloso/fisiologia , Vias Neurais/fisiologia , Adulto , Animais , Criança , Pré-Escolar , Corpo Caloso/fisiopatologia , Feminino , Giro do Cíngulo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Neocórtex/fisiologia , Neocórtex/fisiopatologia , Adulto Jovem
11.
J Clin Invest ; 129(10): 4365-4376, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498148

RESUMO

Inflammatory destruction of iron-rich myelin is characteristic of multiple sclerosis (MS). Although iron is needed for oligodendrocytes to produce myelin during development, its deposition has also been linked to neurodegeneration and inflammation, including in MS. We report perivascular iron deposition in multiple sclerosis lesions that was mirrored in 72 lesions from 13 marmosets with experimental autoimmune encephalomyelitis. Iron accumulated mainly inside microglia/macrophages from 6 weeks after demyelination. Consistently, expression of transferrin receptor, the brain's main iron-influx protein, increased as lesions aged. Iron was uncorrelated with inflammation and postdated initial demyelination, suggesting that iron is not directly pathogenic. Iron homeostasis was at least partially restored in remyelinated, but not persistently demyelinated, lesions. Taken together, our results suggest that iron accumulation in the weeks after inflammatory demyelination may contribute to lesion repair rather than inflammatory demyelination per se.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Ferro/metabolismo , Esclerose Múltipla/metabolismo , Adulto , Idoso , Animais , Callithrix , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Modelos Neurológicos , Esclerose Múltipla/patologia , Receptores da Transferrina/metabolismo , Remielinização
12.
Psychopharmacology (Berl) ; 196(4): 543-53, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18000655

RESUMO

RATIONALE: Manganese (Mn2+)-enhanced magnetic resonance imaging (MEMRI) is an emerging in vivo MR approach for pharmacological research. One new application of MEMRI in this area is to characterize functional changes of a specific neural circuit that is essential to the central effects of a drug challenge. OBJECTIVES: To develop and validate such use of MEMRI in neuropharmacology, the current study applied MEMRI to visualize functional changes within a multisynaptic pathway originating from fasciculus retroflexus (FR) that is central to a commonly abused psychostimulant, methamphetamine (MA). METHODS: Twelve rats were injected intraperitoneally with MA (10 mg/kg) or saline every 2 h for a total of four injections. After 6 days, Mn2+ was injected into the habenular nucleus (FR origin) of all animals, and MEMRI was repeatedly performed at certain points in time over 48 h. The evolution of Mn2+-induced signal enhancement was assessed across the FR tract, the ventral tegmental area (VTA), the striatum, the nucleus accumbens, and the prefrontal cortex (PFC), in both MA-injected animals and controls. RESULTS: MA treatment was found to affect the complexity and efficiency of Mn2+ uptake in the VTA, via the FR tract, with significantly increased Mn2+ accumulation in the VTA, the dorsomedial part of the striatum, and the PFC. CONCLUSIONS: MEMRI successfully visualizes disruptions in the multisynaptic pathway as the consequences of repeated MA exposure. MEMRI is potentially an important method in the future to investigate functional changes within a specific pathway under the influences of pharmacological agents, given its excellent functional, in vivo, spatial, and temporal properties.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Manganês/farmacocinética , Metanfetamina/farmacologia , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Animais , Cátions Bivalentes , Meios de Contraste , Corpo Estriado/patologia , Habenula/metabolismo , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo , Área Tegmentar Ventral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA