Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(22): e2122595119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35609195

RESUMO

Despite recent advances in cancer therapy, hard-to-reach, unidentified tumors remain a significant clinical challenge. A promising approach is to treat locatable and accessible tumors locally and stimulate antitumor immunity in situ to exert systemic effects against distant tumors. We hypothesize that a carrier of immunotherapeutics can play a critical role in activating antitumor immunity as an immunoadjuvant and a local retainer of drug combinations. Here, we develop a polyethyleneimine-lithocholic acid conjugate (2E'), which forms a hydrophobic core and cationic surface to codeliver hydrophobic small molecules and anionic nucleic acids and activates antigen-presenting cells via the intrinsic activities of 2E' components. 2E' delivers paclitaxel and small-interfering RNA (siRNA) targeting PD-L1 (or cyclic dinucleotide, [CDN]) to induce the immunogenic death of tumor cells and maintain the immunoactive tumor microenvironment, and further activates dendritic cells and macrophages, leveraging the activities of loaded drugs. A single local administration of 2E' or its combination with paclitaxel and PD-L1­targeting siRNA or CDN induces strong antitumor immunity, resulting in immediate regression of large established tumors, tumor-free survival, an abscopal effect on distant tumors, and resistance to rechallenge and metastasis in multiple models of murine tumors, including CT26 colon carcinoma, B16F10 melanoma, and 4T1 breast cancer. This study supports the finding that local administration of immunotherapeutics, when accompanied by the rationally designed carrier, can effectively protect the host from distant and recurrent diseases.


Assuntos
Neoplasias , Ácidos Nucleicos , Linhagem Celular Tumoral , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ácidos Nucleicos/uso terapêutico , Paclitaxel/uso terapêutico , Polímeros/uso terapêutico
2.
Small ; 20(10): e2306479, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940612

RESUMO

Neovascular age-related macular degeneration (nAMD) is a leading cause of vision loss in older adults. nAMD is treated with biologics targeting vascular endothelial growth factor; however, many patients do not respond to the current therapy. Here, a small molecule drug, griseofulvin (GRF), is used due to its inhibitory effect on ferrochelatase, an enzyme important for choroidal neovascularization (CNV). For local and sustained delivery to the eyes, GRF is encapsulated in microparticles based on poly(lactide-co-glycolide) (PLGA), a biodegradable polymer with a track record in long-acting formulations. The GRF-loaded PLGA microparticles (GRF MPs) are designed for intravitreal application, considering constraints in size, drug loading content, and drug release kinetics. Magnesium hydroxide is co-encapsulated to enable sustained GRF release over >30 days in phosphate-buffered saline with Tween 80. Incubated in cell culture medium over 30 days, the GRF MPs and the released drug show antiangiogenic effects in retinal endothelial cells. A single intravitreal injection of MPs containing 0.18 µg GRF releases the drug over 6 weeks in vivo to inhibit the progression of laser-induced CNV in mice with no abnormality in the fundus and retina. Intravitreally administered GRF MPs prove effective in preventing CNV, providing proof-of-concept toward a novel, cost-effective nAMD therapy.


Assuntos
Neovascularização de Coroide , Griseofulvina , Camundongos , Humanos , Animais , Idoso , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Griseofulvina/farmacologia , Griseofulvina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/prevenção & controle
3.
Biomacromolecules ; 24(11): 4718-4730, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37651737

RESUMO

High-fidelity preclinical in vitro tissue models can reduce the failure rate of drugs entering clinical trials. Collagen and hyaluronic acid (HA) are major components of the extracellular matrix of many native tissues and affect therapeutic macromolecule diffusion and recovery through tissues. Although collagen and HA are commonly used in tissue engineering, the physical and mechanical properties of these materials are variable and depend highly on processing conditions. In this study, HA was chemically modified and crosslinked via hydrazone bonds to form interpenetrating networks of crosslinked HA (HAX) with collagen (Col). These networks enabled a wide range of mechanical properties, including stiffness and swellability, and microstructures, such as pore morphology and size, that can better recapitulate diverse tissues. We utilized these interpenetrating ColHAX hydrogels as in vitro tissue models to examine macromolecular transport and recovery for early-stage drug screening. Hydrogel formulations with varying collagen and HAX concentrations imparted different gel properties based on the ratio of collagen to HAX. These gels were stable and swelled up to 170% of their original mass, and the storage moduli of the ColHAX gels increased over an order of magnitude by increasing collagen and HA concentration. Interestingly, when HAX concentration was constant and collagen concentration increased, both the pore size and spatial colocalization of collagen and HA increased. HA in the system dominated the ζ-potentials of the gels. The hydrogel and macromolecule properties impacted the mass transport and recovery of lysozyme, ß-lactoglobulin, and bovine serum albumin (BSA) from the ColHAX gels─large molecules were largely impacted by mesh size, whereas small molecules were influenced primarily by electrostatic forces. Overall, the tunable properties demonstrated by the ColHAX hydrogels can be used to mimic different tissues for early-stage assays to understand drug transport and its relationship to matrix properties.


Assuntos
Colágeno , Ácido Hialurônico , Ácido Hialurônico/química , Colágeno/química , Matriz Extracelular/química , Engenharia Tecidual , Hidrogéis/química
4.
Pharm Res ; 39(6): 1085-1114, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35146592

RESUMO

This meta-analysis aims to evaluate the trend, methodological quality and completeness of studies on intracellular delivery of antimicrobial agents. PubMed, Embase, and reference lists of related reviews were searched to identify original articles that evaluated carrier-mediated intracellular delivery and pharmacodynamics (PD) of antimicrobial therapeutics against intracellular pathogens in vitro and/or in vivo. A total of 99 studies were included in the analysis. The most commonly targeted intracellular pathogens were bacteria (62.6%), followed by viruses (16.2%) and parasites (15.2%). Twenty-one out of 99 (21.2%) studies performed neither microscopic imaging nor flow cytometric analysis to verify that the carrier particles are present in the infected cells. Only 31.3% of studies provided comparative inhibitory concentrations against a free drug control. Approximately 8% of studies, albeit claimed for intracellular delivery of antimicrobial therapeutics, did not provide any experimental data such as microscopic imaging, flow cytometry, and in vitro PD. Future research on intracellular delivery of antimicrobial agents needs to improve the methodological quality and completeness of supporting data in order to facilitate clinical translation of intracellular delivery platforms for antimicrobial therapeutics.


Assuntos
Antibacterianos , Sistemas de Liberação de Medicamentos
5.
Nano Lett ; 19(3): 1479-1487, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30707035

RESUMO

Combination therapy is a common clinical practice in the management of malignancies. Synergistic therapeutic outcomes are achieved only when tumor cells are exposed to drugs in an optimal ratio and sequence; therefore, carriers coencapsulating multiple drugs are widely pursued for their coordinated delivery. However, it is challenging to coload drugs with different physicochemical properties in a single carrier with specific ratios. It is not even beneficial to load them in one carrier if they need to be released at different times. We propose to load drugs into chemically compatible carriers separately, equalize different carriers by a simple, rapid, and versatile camouflage technique based on natural polyphenol tannic acid (TA), and administer them in desirable ratios and sequences. To demonstrate this potential, different nanoparticles (NPs) with different charges and material basis, such as polymeric (carboxyl-terminated or amine-terminated cationic polystyrene NPs or poly(lactic- co-glycolic acid (PLGA) NPs), inorganic (mesoporous silica NPs (MSNs)), and liposomal NPs, are camouflaged with TA layers and further modified with folate-conjugated polyethylene glycol to aid in the delivery to tumors. The camouflaged NPs show similar physicochemical properties and interactions with KB cells despite the difference in core platforms, and their mixtures interact with common cell targets in a ratiometric manner. In KB-tumor-bearing mice, the camouflaged PLGA NPs and MSNs show near-perfect colocalization in tumors. These results support that TA helps equalize different NPs with high versatility and enables their ratiometric delivery to common targets. This approach can relieve technical challenges in ratiometric codelivery or sequential delivery of therapeutic agents with distinct physicochemical properties.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polímeros/química , Polifenóis/química , Cátions/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Humanos , Ácido Láctico/química , Lipossomos/química , Lipossomos/uso terapêutico , Nanopartículas/uso terapêutico , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Polímeros/uso terapêutico , Polifenóis/uso terapêutico , Dióxido de Silício/química , Taninos/química
6.
Nano Lett ; 19(11): 8333-8341, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31657935

RESUMO

A group of chemotherapeutic drugs has gained increasing interest in cancer immunotherapy due to the potential to induce immunogenic cell death (ICD). A critical challenge in using the ICD inducers in cancer immunotherapy is the immunotoxicity accompanying their antiproliferative effects. To alleviate this, a nanocapsule formulation of carfilzomib (CFZ), an ICD-inducing proteasome inhibitor, was developed using interfacial supramolecular assembly of tannic acid (TA) and iron, supplemented with albumin coating. The albumin-coated CFZ nanocapsules (CFZ-pTA-alb) attenuated CFZ release, reducing toxicity to immune cells. Moreover, due to the adhesive nature of the TA assembly, CFZ-pTA-alb served as a reservoir of damage-associated molecular patterns released from dying tumor cells to activate dendritic cells. Upon intratumoral administration, CFZ-pTA-alb prolonged tumor retention of CFZ and showed consistently greater antitumor effects than cyclodextrin-solubilized CFZ (CFZ-CD) in B16F10 and CT26 tumor models. Unlike CFZ-CD, the locally injected CFZ-pTA-alb protected or enhanced CD8+ T cell population in tumors, helped develop splenocytes with tumor-specific interferon-γ response, and delayed tumor development on the contralateral side in immunocompetent mice (but not in athymic nude mice), supporting that CFZ-pTA-alb contributed to activating antitumor immunity. This study demonstrates that sustained delivery of ICD inducers by TA-based nanocapsules is an effective way of translating local ICD induction to systemic antitumor immunity.


Assuntos
Antineoplásicos/administração & dosagem , Nanocápsulas/química , Neoplasias/tratamento farmacológico , Oligopeptídeos/administração & dosagem , Taninos/química , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Humanos , Imunidade/efeitos dos fármacos , Morte Celular Imunogênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Oligopeptídeos/uso terapêutico
7.
Mol Pharm ; 16(5): 1864-1873, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30916974

RESUMO

Tumor microenvironment is a significant physical barrier to the effective delivery of chemotherapy into solid tumors. To overcome this challenge, tumors are pretreated with an agent that reduces cellular and extracellular matrix densities prior to chemotherapy. However, it also comes with a concern that metastasis may increase due to the loss of protective containment. We hypothesize that timely priming at the early stage of primary tumors will help control metastasis. To test this, we primed orthotopic 4T1 breast tumors with a paclitaxel (PTX)-loaded iron-oxide-decorated poly(lactic- co-glycolic acid) nanoparticle (NP) composite (PTX@PINC), which can be quickly concentrated in target tissues with the aid of an external magnet, and monitored its effect on the delivery of subsequently administered NPs. Magnetic resonance imaging and optical whole-body imaging confirmed that PTX@PINC was efficiently delivered to tumors by the external magnet and help loosen the tumors to accommodate subsequently delivered NPs. Consistently, the primed tumors responded to Doxil better than nonprimed tumors. In addition, lung metastasis was significantly reduced in the animals PINC-primed prior to Doxil administration. These results support that PINC combined with magnetophoresis can facilitate the timely management of primary tumors with a favorable secondary effect on metastasis.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/secundário , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/administração & dosagem , Paclitaxel/uso terapêutico , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Feminino , Compostos Férricos/química , Injeções Intravenosas , Nanopartículas de Magnetita/química , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/administração & dosagem , Paclitaxel/química , Paclitaxel/farmacologia , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
8.
Mol Pharm ; 16(7): 2858-2871, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31136710

RESUMO

Liposomes are widely used for systemic delivery of chemotherapeutic agents to reduce their nonspecific side effects. Gemcitabine (Gem) makes a great candidate for liposomal encapsulation due to the short half-life and nonspecific side effects; however, it has been difficult to achieve liposomal Gem with high drug loading capacity. Remote loading, which uses a transmembrane pH gradient to induce an influx of drug and locks the drug in the core as a sulfate complex, does not serve Gem as efficiently as doxorubicin (Dox) due to the low p Ka value of Gem. Existing studies have attempted to improve Gem loading capacity in liposomes by employing lipophilic Gem derivatives or creating a high-concentration gradient for active loading into the hydrophilic cores (small volume loading). In this study, we combine the remote loading approach and small volume loading or hypertonic loading, a new approach to induce the influx of Gem into the preformed liposomes by high osmotic pressure, to achieve a Gem loading capacity of 9.4-10.3 wt % in contrast to 0.14-3.8 wt % of the conventional methods. Liposomal Gem showed a good stability during storage, sustained-release over 120 h in vitro, enhanced cellular uptake, and improved cytotoxicity as compared to free Gem. Liposomal Gem showed a synergistic effect with liposomal Dox on Huh7 hepatocellular carcinoma cells. A mixture of liposomal Gem and liposomal Dox delivered both drugs to the tumor more efficiently than a free drug mixture and showed a relatively good anti-tumor effect in a xenograft model of hepatocellular carcinoma. This study shows that bioactive liposomal Gem with high drug loading capacity can be produced by remote loading combined with additional approaches to increase drug influx into the liposomes.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Desoxicitidina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Composição de Medicamentos , Liberação Controlada de Fármacos , Quimioterapia Combinada , Humanos , Lipossomos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
9.
Pharm Res ; 36(4): 65, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30859335

RESUMO

PURPOSE: Tumor-associated macrophages (TAMs) with immune-suppressive M2-like phenotype constitute a significant part of tumor and support its growth, thus making an attractive therapeutic target for cancer therapy. To improve the delivery of drugs that control the survival and/or functions of TAMs, we developed nanoparticulate drug carriers with high affinity for TAMs. METHODS: Poly(lactic-co-glycolic acid) nanoparticles were coated with M2pep, a peptide ligand selectively binding to M2-polarized macrophages, via a simple surface modification method based on tannic acid-iron complex. The interactions of M2pep-coated nanoparticles with macrophages of different phenotypes were tested in vitro and in vivo. PLX3397, an inhibitor of the colony stimulating factor-1 (CSF-1)/CSF-1 receptor (CSF-1R) pathway and macrophage survival, was delivered to B16F10 tumors via M2pep-modified PLGA nanoparticles. RESULTS: In bone marrow-derived macrophages polarized to M2 phenotype, M2pep-coated nanoparticles showed greater cellular uptake than those without M2pep. Consistently, M2pep-coated nanoparticles showed relatively high localization of CD206+ macrophages in B16F10 tumors. PLX3397 encapsulated in M2pep-coated nanoparticles attenuated tumor growth better than the free drug counterpart. CONCLUSION: These results support that M2pep-coating can help nanoparticles to interact with M2-like TAMs and facilitate the delivery of drugs that control the tumor-supportive functions of TAMs.


Assuntos
Macrófagos/efeitos dos fármacos , Nanopartículas/química , Peptídeos/química , Polímeros/química , Aminopiridinas/química , Aminopiridinas/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Pirróis/química , Pirróis/farmacologia , Células RAW 264.7
10.
Small ; 14(16): e1703670, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29570231

RESUMO

Nanoparticulate drug carriers exploit the enhanced permeability of tumor vasculature to achieve selective delivery of chemotherapeutic drugs. For this purpose, nanoparticles (NPs) need to circulate with a long half-life, enter tumors via the permeable vasculature and stay in tumors via favorable interactions with tumor cells. To fulfill these requirements, albumin-coated nanocrystal formulation of paclitaxel (PTX), Cim-F-alb, featuring high drug loading content, physical stability in serum, and surface-bound albumin in its native conformation is prepared. The pharmacokinetic and biodistribution (PK/BD) profiles of Cim-F-alb in a mouse model of B16F10 melanoma show that Cim-F-alb exhibits a longer plasma half-life and a greater PTX deposition in tumors than Abraxane by ≈1.5 and ≈4.6 fold, respectively. Biolayer interferometry analysis indicates that Cim-F-alb has less interaction with serum proteins than nanocrystals lacking albumin coating, indicating the protective effect of the surface-bound albumin against opsonization in the initial deposition phase. With the advantageous PK/BD profiles, Cim-F-alb shows greater and longer-lasting anticancer efficacy than Abraxane at the equivalent dose. This study demonstrates the significance of controlling circulation stability and surface property of NPs in efficient drug delivery to tumors and enhanced anticancer efficacy.


Assuntos
Paclitaxel Ligado a Albumina/metabolismo , Paclitaxel Ligado a Albumina/farmacocinética , Nanopartículas/química , Nanopartículas/metabolismo , Animais , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Masculino , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
11.
Small ; 14(50): e1803601, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30411856

RESUMO

Current nanoparticle (NP) drug carriers mostly depend on the enhanced permeability and retention (EPR) effect for selective drug delivery to solid tumors. However, in the absence of a persistent EPR effect, the peritumoral endothelium can function as an access barrier to tumors and negatively affect the effectiveness of NPs. In recognition of the peritumoral endothelium as a potential barrier in drug delivery to tumors, poly(lactic-co-glycolic acid) (PLGA) NPs are modified with a quinic acid (QA) derivative, synthetic mimic of selectin ligands. QA-decorated NPs (QA-NP) interact with human umbilical vein endothelial cells expressing E-/P-selectins and induce transient increase in endothelial permeability to translocate across the layer. QA-NP reach selectin-upregulated tumors, achieving greater tumor accumulation and paclitaxel (PTX) delivery than polyethylene glycol-decorated NPs (PEG-NP). PTX-loaded QA-NP show greater anticancer efficacy than Taxol or PTX-loaded PEG-NP at the equivalent PTX dose in different animal models and dosing regimens. Repeated dosing of PTX-loaded QA-NP for two weeks results in complete tumor remission in 40-60% of MDA-MB-231 tumor-bearing mice, while those receiving control treatments succumb to death. QA-NP can exploit the interaction with selectin-expressing peritumoral endothelium and deliver anticancer drugs to tumors to a greater extent than the level currently possible with the EPR effect.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/metabolismo , Nanopartículas/química , Ácido Quínico/química , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Nus , Microscopia Confocal , Polímeros/química , Selectinas/química , Microambiente Tumoral/fisiologia
12.
Mol Pharm ; 2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341617

RESUMO

Intravenous delivery of poorly water-soluble anticancer drugs such as docetaxel (DTX) is challenging due to the low bioavailability and the toxicity related to solubilizing excipients. Colloidal nanoparticles are used as alternative carriers, but low drug loading capacity and circulation instability limit their clinical translation. To address these challenges, DTX nanocrystals (NCs) were prepared using Pluronic F127 as an intermediate stabilizer and albumin as a functional surface modifier, which were previously found to be effective in producing small and stable NCs. We hypothesize that the albumin-coated DTX NCs (DTX-F-alb) will remain stable in serum-containing medium so as to effectively leverage the enhanced permeability and retention effect. In addition, the surface-bound albumin, in its native form, may contribute to cellular transport of NCs through interactions with albumin-binding proteins such as secreted protein acidic and rich in cysteine (SPARC). DTX-F-alb NCs showed sheet-like structure with an average length, width, and thickness of 284 ± 96, 173 ± 56, and 40 ± 8 nm and remained stable in 50% serum solution at a concentration greater than 10 µg/mL. Cytotoxicity and cellular uptake of DTX-F-alb and unformulated (free) DTX were compared on three cell lines with different levels of SPARC expression and DTX sensitivity. While the uptake of free DTX was highly dependent on DTX sensitivity, DTX-F-alb treatment resulted in relatively consistent cellular levels of DTX. Free DTX was more efficient in entering drug-sensitive B16F10 and SKOV-3 cells than DTX-F-alb, with consistent cytotoxic effects. In contrast, multidrug-resistant NCI/ADR-RES cells took up DTX-F-alb more than free DTX with time and responded better to the former. This difference was reduced by SPARC knockdown. The high SPARC expression level of NCI/ADR-RES cells, the known affinity of albumin for SPARC, and the opposing effect of SPARC knockdown support that DTX-F-alb have exploited the surface-bound albumin-SPARC interaction in entering NCI/ADR-RES cells. Albumin-coated NC system is a promising formulation for the delivery of hydrophobic anticancer drugs to multidrug-resistant tumors.

13.
AAPS PharmSciTech ; 19(2): 693-699, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28971370

RESUMO

Paclitaxel (PTX) and gemcitabine (GEM) are often used in combination due to the synergistic anticancer effects. PTX and GEM combination showed a synergistic effect to SKOV-3 cells at a molar ratio of 1 to 1 and in PTX ➔ GEM sequence. Liposomes were explored as a carrier of PTX and GEM combination. We optimized the drug loading in liposomes varying the preparation method and co-encapsulated PTX and GEM in a single liposome preparation maintaining the maximum loading efficiency of each drug. However, drug release kinetics from the co-loaded liposomes (LpPG) was suboptimal because of the detrimental effect of PTX on GEM-release control. Instead, a mixture of LpP and LpG, which were separately optimized according to the desired release kinetics, achieved a greater cytotoxic effect than LpPG, due to the attenuation of GEM release relative to PTX. This study illustrates that co-encapsulation in a single carrier is not always desirable for the delivery of drug combinations, when the activity depends on the dosing sequence. These combinations may benefit from the mixed liposome approach, which offers greater flexibility in controlling the ratio and release kinetics of component drugs.


Assuntos
Desoxicitidina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Paclitaxel/administração & dosagem , Paclitaxel/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/metabolismo , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Humanos , Lipossomos , Paclitaxel/metabolismo , Gencitabina
14.
Mol Pharm ; 14(5): 1538-1547, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368124

RESUMO

To develop nanoparticle drug carriers that interact with cells specifically in the mildly acidic tumor microenvironment, we produced polymeric nanoparticles modified with amidated TAT peptide via a simple surface modification method. Two types of core poly(lactic-co-glycolic acid) nanoparticles (NL and NP) were prepared with a phospholipid shell as an optional feature and covered with polydopamine that enabled the conjugation of TAT peptide on the surface. Subsequent treatment with acid anhydrides such as cis-aconitic anhydride (CA) and succinic anhydride (SA) converted amines of lysine residues in TAT peptide to ß-carboxylic amides, introducing carboxylic groups that undergo pH-dependent protonation and deprotonation. The nanoparticles modified with amidated TAT peptide (NLpT-CA and NPpT-CA) avoided interactions with LS174T colon cancer cells and J774A.1 macrophages at pH 7.4 but restored the ability to interact with LS174T cells at pH 6.5, delivering paclitaxel efficiently to the cells following a brief contact time. In LS174T tumor-bearing nude mice, NPpT-CA showed less accumulation in the lung than NPpT, reflecting the shielding effect of amidation, but tumor accumulation of NPpT and NPpT-CA was equally minimal. Comparison of particle stability and protein corona formation in media containing sera from different species suggests that NPpT-CA has been activated and opsonized in mouse blood to a greater extent than those in bovine serum-containing medium, thus losing the benefits of pH-sensitivity expected from in vitro experiments.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Peptídeos/química , Polímeros/química , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Feminino , Citometria de Fluxo , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/química , Camundongos Nus , Microscopia Confocal , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
15.
Mol Pharm ; 12(3): 997-1003, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25658769

RESUMO

In vitro drug release kinetics studies are routinely performed to examine the ability of new drug formulations to modulate drug release. The underlying assumption is that the studies are performed in a sufficiently dilute solution, where the drug release is not limited by the solubility and the difference in release kinetics profile reflects the performance of a drug carrier in vivo. This condition is, however, difficult to meet with poorly water-soluble drug formulations, as it requires a very large volume of release medium relative to the formulation mass, which makes it challenging to measure the drug concentration accurately. These difficulties are aggravated with nanoparticle (NP) formulations, which are hard to separate from the release medium and thus require a dialysis bag or repeated high-speed centrifugation for sampling. Perhaps for these reasons, drug release kinetics studies of NPs of poorly water-soluble drugs are often performed in suboptimal conditions in which the NPs are not sufficiently diluted. However, such a practice can potentially underestimate drug release from NPs, leading to an inaccurate prediction that the NPs will attenuate the drug activity in vivo. Here we perform release kinetics studies of two different NP formulations of paclitaxel, a representative poorly water-soluble drug, according to common practices in the literature. We find that the drug release from NPs can be substantially underestimated depending on the choice of the release medium, NP/medium ratio, and handling of release samples. We discuss potential consequences of underestimating drug release, ending with suggestions for future studies with NP formulations of poorly water-soluble drugs.


Assuntos
Nanopartículas/química , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Biofarmácia , Química Farmacêutica , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Soluções para Hemodiálise/química , Humanos , Técnicas In Vitro , Paclitaxel/química , Diálise Renal , Albumina Sérica/química , Solubilidade , Água
16.
Chem Eng Sci ; 125: 75-84, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25684779

RESUMO

Nanocarriers providing spatiotemporal control of drug release contribute to reducing toxicity and improving therapeutic efficacy of a drug. On the other hand, nanocarriers face unique challenges in controlling drug release kinetics, due to the large surface area per volume ratio and the short diffusion distance. To develop nanocarriers with desirable release kinetics for target applications, it is important to understand the mechanisms by which a carrier retains and releases a drug, the effects of composition and morphology of the carrier on the drug release kinetics, and current techniques for preparation and modification of nanocarriers. This review provides an overview of drug release mechanisms and various nanocarriers with a specific emphasis on approaches to control the drug release kinetics.

17.
Chron Respir Dis ; 11(3): 147-152, 2014 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-24906688

RESUMO

The Leicester Cough Questionnaire (LCQ) is a self-administered questionnaire developed in England and validated for reliability. We developed a Korean translation of this questionnaire by applying a sequential forward and backward translation approach. The purpose of this study is to validate the Korean version of the LCQ (LCQ-K) in Korean patients with chronic cough. A multicenter prospective study was undertaken with 100 chronic cough patients who consented to participate in the study. The LCQ-K includes eight physical items, seven psychological items, and four social items. Visual analog scale (VAS) of cough, Borg Cough Scale (BCS), and Short Form-36 (SF-36) were used as external comparators. Participants included 52 women and 48 men with ages ranging from 18 years to 69 years. The concurrent validity comparing LCQ-K to VAS, BCS, and SF-36 yielded statistically significant Pearson correlation coefficients. The LCQ-K showed good reliability in three domains, with Cronbach's α coefficients ranging from 0.84 to 0.87 (total: 0.91). Test-retest reliability was investigated with single measure intraclass correlation coefficients, which were found to be practically and statistically significant (p = 0.005). Responsiveness was validated by effective size ranging from 1.16 to 1.40 in each domain. LCQ-K is a reliable, valid, and responsive disease-specific questionnaire for assessing symptoms and quality of life of Korean patients with chronic cough.

18.
Curr Opin Biotechnol ; 87: 103105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461748

RESUMO

Agonists of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway, a critical mediator of innate immune response to foreign invaders with DNA, have gained significant interest in cancer immunotherapy. STING agonists are envisioned as a way of complementing the antitumor activity of the patient's immune system and immune checkpoint blockade therapy. However, their clinical development has been challenging due to the poor pharmacokinetic and physicochemical properties. This review discusses drug delivery efforts to circumvent the challenges, their accomplishment, and unmet needs based on the last five years of literature.


Assuntos
Imunoterapia , Proteínas de Membrana , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Imunoterapia/métodos , Proteínas de Membrana/agonistas , Animais , Sistemas de Liberação de Medicamentos/métodos
19.
Eur J Pharm Biopharm ; 197: 114203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38302049

RESUMO

RNAs are known for versatile functions and therapeutic utility. They have gained significant interest since the approval of several RNA drugs, including COVID-19 mRNA vaccines and therapeutic agents targeting liver diseases. There are increasing expectations for a new class of RNA drugs for broader applications. Successful development of RNA drugs for new applications hinges on understanding their diverse functions and structures. In this review, we explore the last five years of literature to understand current approaches to formulate a spectrum of RNA drugs, focusing on new efforts to expand their applications beyond vaccines and liver diseases.


Assuntos
Hepatopatias , Nanopartículas , Vacinas , Humanos , Preparações Farmacêuticas , RNA Interferente Pequeno/genética , Hepatopatias/tratamento farmacológico , Nanopartículas/química
20.
J Control Release ; 370: 490-500, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685384

RESUMO

Misuse of prescription opioid drugs is the leading cause of the opioid crisis and overdose-related death. Abuse deterrent formulations (ADFs) have been developed to discourage attempts to tamper with the formulation and alter the ingestion methods. However, abusers develop complex extraction strategies to circumvent the ADF technologies. For comprehensive deterrence of drug abuse, we develop tannic acid nanoparticles (NPs) that protect encapsulated opioids from solvent extraction and thermal challenge (crisping), complementing the existing formulation strategy to deter injection abuse. Here, we develop a hybrid ADF tablet (NP-Tab), consisting of iron-crosslinked tannic acid NPs encapsulating thebaine (model opioid compound), xanthan gum, and chitosan (gel-forming polymers), and evaluate its performance in common abuse conditions. NP-Tab tampered by crushing and suspended in aqueous solvents forms an instantaneous gel, which is difficult to pull or push through a 21-gauge needle. NPs insulate the drug from organic solvents, deterring solvent extraction. NPs also promote thermal destruction of the drug to make crisping less rewarding. However, NP-Tab releases thebaine in the simulated gastric fluid without delay, suggesting that its analgesic effect may be unaffected if consumed orally as prescribed. These results demonstrate that NP-Tab can provide comprehensive drug abuse deterrence, resisting aqueous/organic solvent extraction, injection, and crisping, while retaining its therapeutic effect upon regular usage.


Assuntos
Analgésicos Opioides , Quitosana , Nanopartículas , Transtornos Relacionados ao Uso de Opioides , Nanopartículas/química , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/química , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Quitosana/química , Animais , Taninos/química , Taninos/administração & dosagem , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/administração & dosagem , Formulações de Dissuasão de Abuso , Masculino , Comprimidos , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA