Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(38): e2119630119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095216

RESUMO

Trigeminal neuralgia (TN) is a unique pain disorder characterized by intense paroxysmal facial pain within areas innervated by the trigeminal nerve. Although most cases of TN are sporadic, familial clusters of TN suggest that genetic factors may contribute to this disorder. Whole-exome sequencing in patients with TN reporting positive family history demonstrated a spectrum of variants of ion channels including TRP channels. Here, we used patch-clamp analysis and Ca2+ and Na+ imaging to assess a rare variant in the TRPM7 channel, p.Ala931Thr, within transmembrane domain 3, identified in a man suffering from unilateral TN. We showed that A931T produced an abnormal inward current carried by Na+ and insensitive to the pore blocker Gd3+. Hypothesizing that replacement of the hydrophobic alanine at position 931 with the more polar threonine destabilizes a hydrophobic ring, near the voltage sensor domain, we performed alanine substitutions of F971 and W972 and obtained results suggesting a role of A931-W972 hydrophobic interaction in S3-S4 hydrophobic cleft stability. Finally, we transfected trigeminal ganglion neurons with A931T channels and observed that expression of this TRPM7 variant lowers current threshold and resting membrane potential, and increases evoked firing activity in TG neurons. Our results support the notion that the TRPM7-A931T mutation located in the S3 segment at the interface with the transmembrane region S4, generates an omega current that carries Na+ influx in physiological conditions. A931T produces hyperexcitability and a sustained Na+ influx in trigeminal ganglion neurons that may underlie pain in this kindred with trigeminal neuralgia.


Assuntos
Proteínas Serina-Treonina Quinases , Canais de Cátion TRPM , Gânglio Trigeminal , Neuralgia do Trigêmeo , Alanina/genética , Humanos , Masculino , Mutação , Neurônios/fisiologia , Proteínas Serina-Treonina Quinases/genética , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Gânglio Trigeminal/fisiopatologia , Neuralgia do Trigêmeo/genética
2.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138218

RESUMO

Group I metabotropic glutamate receptors (mGluR) are involved in various forms of synaptic plasticity that are believed to underlie declarative memory. We previously showed that mGluR5 specifically activates channels containing TRPC1, an isoform of the canonical family of Transient Receptor Potential channels highly expressed in the CA1-3 regions of the hippocampus. Using a tamoxifen-inducible conditional knockout model, we show here that the acute deletion of the Trpc1 gene alters the extinction of spatial reference memory. mGluR-induced long-term depression, which is partially responsible for memory extinction, was impaired in these mice. Similar results were obtained in vitro and in vivo by inhibiting the channel by its most specific inhibitor, Pico145. Among the numerous known postsynaptic pathways activated by type I mGluR, we observed that the deletion of Trpc1 impaired the activation of ERK1/2 and the subsequent expression of Arc, an immediate early gene that plays a key role in AMPA receptors endocytosis and subsequent long-term depression.


Assuntos
Hipocampo/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Depressão/genética , Depressão/metabolismo , Depressão/fisiopatologia , Hipocampo/fisiologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Memória Espacial/fisiologia , Canais de Cátion TRPC/genética
3.
Am J Physiol Endocrinol Metab ; 313(1): E48-E62, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28325731

RESUMO

AMP-activated protein kinase (AMPK) plays a key role in energy homeostasis and is activated in response to contraction-induced ATP depletion in skeletal muscle via a rise in intracellular AMP/ADP concentrations. AMP can be deaminated by AMP-deaminase (AMPD) to IMP, which is hydrolyzed to inosine by cytosolic 5'-nucleotidase II (NT5C2). AMP can also be hydrolyzed to adenosine by cytosolic 5'-nucleotidase 1A (NT5C1A). Previous gene silencing and overexpression studies indicated control of AMPK activation by NT5C enzymes. In the present study using gene knockout mouse models, we investigated the effects of NT5C1A and NT5C2 deletion on intracellular adenine nucleotide levels and AMPK activation in electrically stimulated skeletal muscles. Surprisingly, NT5C enzyme knockout did not lead to enhanced AMP or ADP concentrations in response to contraction, with no potentiation of increases in AMPK activity in extensor digitorum longus (EDL) and soleus mouse muscles. Moreover, dual blockade of AMP metabolism in EDL using an AMPD inhibitor combined with NT5C1A deletion did not enhance rises in AMP and ADP or increased AMPK activation by electrical stimulation. The results on muscles from the NT5C knockout mice contradict previous findings where AMP levels and AMPK activity were shown to be modulated by NT5C enzymes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , 5'-Nucleotidase , Animais , Ativação Enzimática , Deleção de Genes , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Nucleotídeos/metabolismo , Solubilidade
4.
J Physiol ; 594(24): 7327-7340, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27779758

RESUMO

KEY POINTS: Increase in blood pressure in the renal afferent arteriole is known to induce an increase in cytosolic calcium concentration ([Ca2+ ]i ) of juxtaglomerular (JG) cells and to result in a decreased secretion of renin. Mechanical stimulation of As4.1 JG cells induces an increase in [Ca2+ ]i that is inhibited by HC067047 and RN1734, two inhibitors of TRPV4, or by siRNA-mediated repression of TRPV4. Inhibition of TRPV4 impairs pressure-induced decrease in renin secretion. Compared to wild-type mice, Trpv4-/- mice present increased resting plasma levels of renin and aldosterone and present a significantly altered pressure-renin relationship. We suggest that TRPV4 channel participates in mechanosensation at the juxtaglomerular apparatus. ABSTRACT: The renin-angiotensin system is a crucial blood pressure regulation system. It consists of a hormonal cascade where the rate-limiting enzyme is renin, which is secreted into the blood flow by renal juxtaglomerular (JG) cells in response to low pressure in the renal afferent arteriole. In contrast, an increase in blood pressure results in a decreased renin secretion. This is accompanied by a transitory increase in [Ca2+ ]i of JG cells. The inverse relationship between [Ca2+ ]i and renin secretion has been called the 'calcium paradox' of renin release. How increased pressure induces a [Ca2+ ]i transient in JG cells, is however, unknown. We observed that [Ca2+ ]i transients induced by mechanical stimuli in JG As4.1 cells were completely abolished by HC067047 and RN1734, two inhibitors of TRPV4. They were also reduced by half by siRNA-mediated repression of TRPV4 but not after repression or inhibition of TRPV2 or Piezo1 ion channels. Interestingly, the stimulation of renin secretion by the adenylate cyclase activator forskolin was totally inhibited by cyclic stretching of the cells. This effect was mimicked by stimulation with GSK1016790A and 4αPDD, two activators of TRPV4 and inhibited in the presence of HC067047. Moreover, in isolated perfused kidneys from Trpv4-/- mice, the pressure-renin relationship was significantly altered. In vivo, Trpv4-/- mice presented increased plasma levels of renin and aldosterone compared to wild-type mice. Altogether, our results suggest that TRPV4 is involved in the pressure-induced entry of Ca2+ in JG cells, which inhibits renin release and allows the negative feedback regulation on blood pressure.


Assuntos
Sistema Justaglomerular/metabolismo , Mecanotransdução Celular/fisiologia , Renina/antagonistas & inibidores , Canais de Cátion TRPV/fisiologia , Aldosterona/sangue , Animais , Cálcio/fisiologia , Linhagem Celular Tumoral , Masculino , Camundongos Knockout , Pressão , Renina/sangue , Renina/metabolismo , Canais de Cátion TRPV/genética
5.
Biochem Biophys Res Commun ; 441(3): 579-85, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24184478

RESUMO

Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca(2+) signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.


Assuntos
Movimento Celular/fisiologia , Proteínas do Citoesqueleto/fisiologia , Adesões Focais/fisiologia , Proteínas de Membrana/fisiologia , Proteínas dos Microfilamentos/fisiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Proteínas do Citoesqueleto/genética , Adesões Focais/efeitos dos fármacos , Masculino , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Pseudópodes/fisiologia , Ratos , Ratos Wistar
6.
Front Mol Neurosci ; 16: 1081657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168681

RESUMO

The postsynaptic inhibition through GABAA receptors (GABAAR) relies on two mechanisms, a shunting effect due to an increase in the postsynaptic membrane conductance and, in mature neurons, a hyperpolarization effect due to an entry of chloride into postsynaptic neurons. The second effect requires the action of the K+-Cl- cotransporter KCC2 which extrudes Cl- from the cell and maintains its cytosolic concentration very low. Neuronal chloride equilibrium seems to be dysregulated in several neurological and psychiatric conditions such as epilepsy, anxiety, schizophrenia, Down syndrome, or Alzheimer's disease. In the present study, we used the KCC2 Cre-lox knockdown system to investigate the role of KCC2 in synaptic plasticity and memory formation in adult mice. Tamoxifen-induced conditional deletion of KCC2 in glutamatergic neurons of the forebrain was performed at 3 months of age and resulted in spatial and nonspatial learning impairment. On brain slices, the stimulation of Schaffer collaterals by a theta burst induced long-term potentiation (LTP). The lack of KCC2 did not affect potentiation of field excitatory postsynaptic potentials (fEPSP) measured in the stratum radiatum (dendrites) but increased population spike (PS) amplitudes measured in the CA1 somatic layer, suggesting a reinforcement of the EPSP-PS potentiation, i.e., an increased ability of EPSPs to generate action potentials. At the cellular level, KCC2 deletion induced a positive shift in the reversal potential of GABAAR-driven Cl- currents (EGABA), suggesting an intracellular accumulation of chloride subsequent to the downregulation of KCC2. After treatment with bumetanide, an antagonist of the Na+-K+-Cl- cotransporter NKCC1, spatial memory impairment, chloride accumulation, and EPSP-PS potentiation were rescued in mice lacking KCC2. The presented results emphasize the importance of chloride equilibrium and GABA-inhibiting ability in synaptic plasticity and memory formation.

7.
J Vasc Res ; 49(6): 522-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22948674

RESUMO

In addition to its role in the regulation of artery contraction, Rho kinase (ROCK) was reported to be involved in the cytosolic calcium response to vasoconstrictor agonists in rat aorta and superior mesenteric artery (SMA). However, it remains to be determined whether ROCK also contributes to calcium signaling in resistance arteries, which play a major role in blood pressure regulation. The investigation of the effect of ROCK inhibition on the calcium and contractile responses of rat resistance mesenteric artery (RMA), in comparison with aorta and SMA, indicated that the calcium response to noradrenaline was inhibited by the ROCK inhibitor Y-27632 in aorta and SMA but not in RMA. The effect of Y-27632 on the calcium signal was unaffected by cytochalasin-D. ROCK activation in noradrenaline-stimulated arteries was confirmed by the inhibition of myosin light chain phosphorylation by Y-27632. Moreover, noradrenaline-induced calcium signaling was similarly inhibited by nimodipine in aorta, SMA and RMA, but nimodipine sensitivity of the contraction increased from the aorta to the RMA, suggesting that the contraction was controlled by different sources of calcium. In pressurized RMA, Y-27632 and H-1152 depressed pressure-induced calcium responses and abolished myogenic contraction. These results stress the important differences in calcium signaling between conductance and resistance arteries.


Assuntos
Amidas/farmacologia , Aorta/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Piridinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Animais , Aorta/metabolismo , Masculino , Artéria Mesentérica Superior/efeitos dos fármacos , Norepinefrina/farmacologia , Ratos , Ratos Wistar , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
8.
J Cell Biochem ; 112(9): 2574-84, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21598299

RESUMO

Ezrin, Radixin, Moesin binding phosphoprotein 50 (EBP50) is a scaffold protein that possesses two PDZ interacting domains. We have shown that, in isolated artery stimulated with noradrenaline, EBP50 interacts with several elements of the cytoskeleton. However, the contribution of EBP50 to the organization of the cytoskeleton is unknown. We have used primary cultured vascular smooth muscle cells to investigate the involvement of EBP50 in the regulation of cell architecture, motility and cell cycle, and to identify its target proteins and subsequent action mechanism. The results showed that depletion of EBP50 by siRNA transfection induced changes in cell architecture and increased cell migration. The same phenotype was induced by inhibition of myosin IIa and this effect was not additive in cells depleted for EBP50. Moreover, a larger proportion of binucleated cells was observed after EBP50 depletion, indicating a defect in cytokinesis. The identification, after co-immunoprecipitation, of a direct interaction of EBP50 with both tubulin and myosin IIa suggested that EBP50 could regulate cell migration and cytokinesis by linking myosin IIa fibers and microtubule network. Indeed, depletion of EBP50 also dismantled myosin IIa fibers and induced the formation of stable microtubules in lamellae expansions and Rac1 activation. This signaling cascade leads to the formation of lamellipodia, trailing tails and decrease of focal adhesion formation, triggering cell migration.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular , Citocinese , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Fosfoproteínas/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Aorta/citologia , Proteínas de Transporte/genética , Forma Celular , Células Cultivadas , Masculino , Microscopia de Fluorescência , Microtúbulos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Cadeias Leves de Miosina/metabolismo , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/genética , Fosforilação , Cultura Primária de Células , Interferência de RNA , Ratos , Ratos Wistar , Trocadores de Sódio-Hidrogênio
9.
Sci Rep ; 11(1): 17600, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475508

RESUMO

The function of the amyloid precursor protein (APP) is not fully understood, but its cleavage product amyloid beta (Aß) together with neurofibrillary tangles constitute the hallmarks of Alzheimer's disease (AD). Yet, imbalance of excitatory and inhibitory neurotransmission accompanied by loss of synaptic functions, has been reported much earlier and independent of any detectable pathological markers. Recently, soluble APP fragments have been shown to bind to presynaptic GABAB receptors (GABABRs), subsequently decreasing the probability of neurotransmitter release. In this body of work, we were able to show that overexpression of wild-type human APP in mice (hAPPwt) causes early cognitive impairment, neuronal loss, and electrophysiological abnormalities in the absence of amyloid plaques and at very low levels of Aß. hAPPwt mice exhibited neuronal overexcitation that was evident in EEG and increased long-term potentiation (LTP). Overexpression of hAPPwt did not alter GABAergic/glutamatergic receptor components or GABA production ability. Nonetheless, we detected a decrease of GABA but not glutamate that could be linked to soluble APP fragments, acting on presynaptic GABABRs and subsequently reducing GABA release. By using a specific presynaptic GABABR antagonist, we were able to rescue hyperexcitation in hAPPwt animals. Our results provide evidence that APP plays a crucial role in regulating inhibitory neurotransmission.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Receptores de Glutamato/metabolismo , Regulação para Cima , Ácido gama-Aminobutírico/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Humanos , Masculino , Camundongos , Plasticidade Neuronal , Sinapses/genética , Sinapses/metabolismo , Transmissão Sináptica
10.
Sci Signal ; 13(653)2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051259

RESUMO

Defects in protein reabsorption by the proximal tubule are toxic for epithelial cells in the nephron and may result in nephropathy. In this study, we showed that the ion channel TRPV4 modulated the endocytosis of albumin and low-molecular weight proteins in the proximal tubule. TRPV4 was found at the basolateral side of proximal tubule cells, and its mechanical activation by cell stretching induced Ca2+ entry into the cytosol, which promoted endocytosis. Trpv4-/- mice presented with mild proximal tubule dysfunction under basal conditions. To challenge endocytic function, the permeability of the glomerular filter was altered by systemic delivery of angiotensin II. The proteinuria induced by this treatment was more severe in Trpv4-/- than in Trpv4+/+ mice. Injecting antibodies against the glomerular basement membrane to induce glomerulonephritis is a more pathophysiologically relevant method of impairing glomerular filter permeability. Albuminuria was more severe in mice that lacked TRPV4 specifically in the proximal tubule than in control mice. These results emphasize the importance of TRPV4 in sensing pressure in the proximal tubule in response to variations in the amount of ultrafiltrate and unveil a mechanism that controls protein reabsorption.


Assuntos
Albuminas/metabolismo , Túbulos Renais Proximais/metabolismo , Canais de Cátion TRPV/metabolismo , Albuminas/farmacocinética , Animais , Células Cultivadas , Endocitose , Regulação da Expressão Gênica , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Túbulos Renais Proximais/citologia , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Patch-Clamp , Estresse Mecânico , Canais de Cátion TRPV/genética
11.
Front Cell Neurosci ; 12: 318, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271326

RESUMO

Group I metabotropic glutamate receptors, in particular mGluR5, have been implicated in various forms of synaptic plasticity that are believed to underlie declarative memory. We observed that mGluR5 specifically activated a channel containing TRPC1, an isoform of the canonical family of transient receptor potential (TRPC) channels highly expressed in CA1-3 regions of the hippocampus. TRPC1 is able to form tetrameric complexes with TRPC4 and/or TRPC5 isoforms. TRPC1/4/5 complexes have recently been involved in the efficiency of synaptic transmission in the hippocampus. We therefore used a mouse model devoid of TRPC1 expression to investigate the involvement of mGluR5-TRPC1 pathway in synaptic plasticity and memory formation. Trpc1-/- mice showed alterations in spatial working memory and fear conditioning. Activation of mGluR increased synaptic excitability in neurons from WT but not from Trpc1-/- mice. LTP triggered by a theta burst could not maintain over time in brain slices from Trpc1-/- mice. mGluR-induced LTD was also impaired in these mice. Finally, acute inhibition of TRPC1 by Pico145 on isolated neurons or on brain slices mimicked the genetic depletion of Trpc1 and inhibited mGluR-induced entry of cations and subsequent effects on synaptic plasticity, excluding developmental or compensatory mechanisms in Trpc1-/- mice. In summary, our results indicate that TRPC1 plays a role in synaptic plasticity and spatial working memory processes.

12.
Cell Calcium ; 60(6): 373-383, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27638096

RESUMO

TRP channels are involved in the control of a broad range of cellular functions such as cell proliferation and motility. We investigated the gating mechanism of TRPC1 channel and its role in U251 glioblastoma cells migration in response to chemotaxis by platelet-derived growth factor (PDGF). PDGF induced an influx of Ca2+ that was partially inhibited after pretreatment of the cells with SKI-II, a specific inhibitor of sphingosine kinase producing sphingosine-1-P (S1P). S1P by itself also induced an entry of Ca2+. Interestingly, PDGF- and S1P-induced entries of Ca2+ were lost in siRNA-TRPC1 treated cells. PDGF-induced chemotaxis of U251 cells was dramatically inhibited in cells treated with SKI-II. This effect was almost completely rescued by addition of synthetic S1P. Chemotaxis was also completely lost in siRNA-TRPC1 treated cells and interestingly, the rescue of migration of cells treated with SKI-II by S1P was dependent on the expression of TRPC1. Immunocytochemistry revealed that, in response to PDGF, TRPC1 translocated from inside of the cell to the front of migration (lamellipodes). This effect seemed PI3K dependent as it was inhibited by cell pre-treatment with LY294002, a PI3-kinase inhibitor. Our results thus identify S1P as a potential activator of TRPC1, a channel involved in cell orientation during chemotaxis by PDGF.


Assuntos
Quimiotaxia/efeitos dos fármacos , Glioblastoma/metabolismo , Lisofosfolipídeos/farmacologia , Esfingosina/análogos & derivados , Canais de Cátion TRPC/metabolismo , Cálcio/análise , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Esfingosina/farmacologia , Células Tumorais Cultivadas
13.
Cell Calcium ; 52(6): 413-21, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22883550

RESUMO

In addition to its role in artery contraction, Rho kinase (ROCK) is reported to be involved in the Ca(2+) response to vasoconstrictor agonist in rat aorta. However the signaling pathway mediated by ROCK had not been investigated so far and it was not known whether ROCK also contributed to Ca(2+) signaling in cultured vascular smooth muscle cells (VSMC), which undergo profound phenotypic changes. Our results showed that in VSMC, ROCK inhibition by Y-27632 or H-1152 had no effect on the Ca(2+) response to vasopressin, while in aorta the vasopressin-induced Ca(2+) entry was significantly decreased. The inhibition of myosin light chain kinase (MLCK) by ML-7 depressed the vasopressin-induced Ca(2+) signal in aorta but not in VSMC. The difference in ROCK sensitivity of vasopressin-induced Ca(2+) entry between aorta and VSMC was not related to an alteration of the RhoA/ROCK pathway. However, MLCK expression and activity were depressed in cultured cells compared to aorta. We concluded that the regulation of vasopressin-induced Ca(2+) entry by ROCK in aorta could involve the myosin cytoskeleton and could be prevented by the downregulation of MLCK in VSMC. These results underline the important differences in Ca(2+) regulation between whole tissue and cultured cells.


Assuntos
Aorta/citologia , Cálcio/metabolismo , Músculo Liso Vascular/enzimologia , Vasopressinas/farmacologia , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Amidas/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Azepinas/farmacologia , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Quinase de Cadeia Leve de Miosina/metabolismo , Naftalenos/farmacologia , Fosforilação , Piridinas/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA