Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Molecules ; 29(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39203033

RESUMO

Inflammatory bowel disease (IBD) is a chronic, lifelong disorder characterized by inflammation of the gastrointestinal (GI) tract. The exact etiology of IBD remains incompletely understood due to its multifaceted nature, which includes genetic predisposition, environmental factors, and host immune response dysfunction. Currently, there is no cure for IBD. This review discusses the available treatment options and the challenges they present. Importantly, we examine emerging therapeutics, such as biologics and immunomodulators, that offer targeted treatment strategies for IBD. While many IBD patients do not respond adequately to most biologics, recent clinical trials combining biologics with small-molecule drugs (SMDs) have provided new insights into improving the IBD treatment landscape. Furthermore, numerous novel and specific therapeutic targets have been identified. The high cost of IBD drugs poses a significant barrier to treatment, but this challenge may be alleviated with the development of more affordable biosimilars. Additionally, emerging point-of-care protein biomarkers from serum and plasma are showing potential for enhancing the precision of IBD diagnosis and prognosis. Several natural products (NPs), including crude extracts, small molecules, and peptides, have demonstrated promising anti-inflammatory activity in high-throughput screening (HTS) systems and advanced artificial intelligence (AI)-assisted platforms, such as molecular docking and ADMET prediction. These platforms are advancing the search for alternative IBD therapies derived from natural sources, potentially leading to more affordable and safer treatment options with fewer side effects.


Assuntos
Produtos Biológicos , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Biomarcadores , Animais , Agentes de Imunomodulação/uso terapêutico , Agentes de Imunomodulação/química
2.
Metabolomics ; 19(7): 63, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37356029

RESUMO

INTRODUCTION: Helminths are parasitic worms that infect millions of people worldwide and secrete a variety of excretory-secretory products (ESPs), including proteins, peptides, and small molecules. Despite this, there is currently no comprehensive review article on cataloging small molecules from helminths, particularly focusing on the different classes of metabolites (polar and lipid molecules) identified from the ESP and somatic tissue extracts of helminths that were studied in isolation from their hosts. OBJECTIVE: This review aims to provide a comprehensive assessment of the metabolomics and lipidomics studies of parasitic helminths using all available analytical platforms. METHOD: To achieve this objective, we conducted a meta-analysis of the identification and characterization tools, metabolomics approaches, metabolomics standard initiative (MSI) levels, software, and databases commonly applied in helminth metabolomics studies published until November 2021. RESULT: This review analyzed 29 studies reporting the metabolomic assessment of ESPs and somatic tissue extracts of 17 helminth species grown under ex vivo/in vitro culture conditions. Of these 29 studies, 19 achieved the highest level of metabolite identification (MSI level-1), while the remaining studies reported MSI level-2 identification. Only 155 small molecule metabolites, including polar and lipids, were identified using MSI level-1 characterization protocols from various helminth species. Despite the significant advances made possible by the 'omics' technology, standardized software and helminth-specific metabolomics databases remain significant challenges in this field. Overall, this review highlights the potential for future studies to better understand the diverse range of small molecules that helminths produce and leverage their unique metabolomic features to develop novel treatment options.


Assuntos
Helmintos , Metabolômica , Animais , Lipidômica , Bases de Dados Factuais
3.
Molecules ; 27(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011546

RESUMO

Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is gaining access to natural products, including medicinal plants. This bottleneck is heightened for endangered species prohibited for large sample collection, even if they show biological hits. While cultivating the pharmaceutically interesting plant species may be a solution, it is not always possible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a potential alternative source for drug discovery. In order to overcome abiotic environmental stressors, plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue damage. Plants either synthesize new chemicals or increase the concentration (in most instances) of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin, catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs produced under various abiotic stress conditions are plant defense chemicals and are functionally anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids and phenolic compounds. We have searched the literature on plants affected by abiotic stress (primarily studied in the simulated growth conditions) and their PSMs (including pharmacological activities) from PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites. We used search keywords: "stress-affected plants," "plant secondary metabolites, "abiotic stress," "climatic influence," "pharmacological activities," "bioactive compounds," "drug discovery," and "medicinal plants" and retrieved published literature between 1973 to 2021. This review provides an overview of variation in bioactive phytochemical production in plants under various abiotic stress and their potential in the biodiscovery of therapeutic drugs. We excluded studies on the effects of biotic stress on PSMs.


Assuntos
Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Desenvolvimento de Medicamentos , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/fisiologia , Metabolismo Secundário , Estresse Fisiológico , Adaptação Biológica , Produtos Biológicos/química , Clima , Descoberta de Drogas , Redes e Vias Metabólicas , Compostos Fitoquímicos/química , Relação Estrutura-Atividade
4.
Molecules ; 27(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744969

RESUMO

Australian tropical plants have been a rich source of food (bush food) and medicine to the first Australians (Aboriginal people), who are believed to have lived for more than 50,000 years. Plants such as spreading sneezeweed (Centipeda minima), goat's foot (Ipomoea pes-caprae), and hop bush (Dodonaea viscosa and D. polyandra) are a few popular Aboriginal medicinal plants. Thus far, more than 900 medicinal plants have been recorded in the tropical region alone, and many of them are associated with diverse ethnomedicinal uses that belong to the traditional owners of Aboriginal people. In our effort to find anti-inflammatory lead compounds in collaboration with Aboriginal communities from their medicinal plants, we reviewed 78 medicinal plants used against various inflammation and inflammatory-related conditions by Aboriginal people. Out of those 78 species, we have included only 45 species whose crude extracts or isolated pure compounds showed anti-inflammatory properties. Upon investigating compounds isolated from 40 species (for five species, only crude extracts were studied), 83 compounds were associated with various anti-inflammatory properties. Alphitolic acid, Betulinic acid, Malabaric acid, and Hispidulin reduced proinflammatory cytokines and cyclooxygenase enzymes (COX-1 and 2) with IC50 values ranging from 11.5 to 46.9 uM. Other promising anti-inflammatory compounds are Brevilin A (from Centipeda minima), Eupalestin, and 5'-methoxy nobiletin (from Ageratum conyzoides), Calophyllolide (from Calophyllum inophyllum), and Brusatol (from Brucea javanica). D. polyandra is one example of an Aboriginal medicinal plant from which a novel anti-inflammatory benzoyl ester clerodane diterpenoid compound was obtained (compound name not disclosed), and it is in the development of topical medicines for inflammatory skin diseases. Medicinal plants in the tropics and those associated with indigenous knowledge of Aboriginal people could be a potential alternative source of novel anti-inflammatory therapeutics.


Assuntos
Plantas Medicinais , Anti-Inflamatórios/farmacologia , Austrália , Humanos , Compostos Fitoquímicos/farmacologia , Fitoterapia , Extratos Vegetais/farmacologia , Plantas Medicinais/química
5.
Plants (Basel) ; 13(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611553

RESUMO

The Australian Wet Tropics World Heritage Area (WTWHA) in northeast Queensland is home to approximately 18 percent of the nation's total vascular plant species. Over the past century, human activity and industrial development have caused global climate changes, posing a severe and irreversible danger to the entire land-based ecosystem, and the WTWHA is no exception. The current average annual temperature of WTWHA in northeast Queensland is 24 °C. However, in the coming years (by 2030), the average annual temperature increase is estimated to be between 0.5 and 1.4 °C compared to the climate observed between 1986 and 2005. Looking further ahead to 2070, the anticipated temperature rise is projected to be between 1.0 and 3.2 °C, with the exact range depending on future emissions. We identified 84 plant species, endemic to tropical montane cloud forests (TMCF) within the WTWHA, which are already experiencing climate change threats. Some of these plants are used in herbal medicines. This study comprehensively reviewed the metabolomics studies conducted on these 84 plant species until now toward understanding their physiological and metabolomics responses to global climate change. This review also discusses the following: (i) recent developments in plant metabolomics studies that can be applied to study and better understand the interactions of wet tropics plants with climatic stress, (ii) medicinal plants and isolated phytochemicals with structural diversity, and (iii) reported biological activities of crude extracts and isolated compounds.

6.
Heliyon ; 10(3): e24969, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317921

RESUMO

Bhutan's scholarly traditional medical system is called Bhutanese Sowa Rigpa medicine (BSM). It was integrated with the modern healthcare system in 1967. Over 200 medicinal plants are used to produce more than 100 poly-ingredient medicinal formulations. Although BSM is supported by well-documented principles, pharmacopoeias, diagnostic procedures, treatment regimens, and traditional quality assurance systems, modern quality control parameters have become essential to distinguish closely related species and prevent contamination from exogenous impurities. This study aims to establish reliable analytical methods and quality control parameters for Aster flaccidus Bunge and Aster diplostephioides (DC.) Benth. ex C.B. Clarke used as ingredients in the BMS poly-ingredient medicinal formulations. Furthermore, their reported phytochemicals and biological activities are also discussed in this study. Standard pharmacognostic techniques, including macroscopical and microscopical examinations of crude drugs, were employed to establish the quality control parameters for two Aster species. The physicochemical limits were determined as per the World Health Organization (WHO)-recommended guidelines and methods described in the Thai herbal pharmacopoeia. A high-performance thin-layer liquid chromatography (HPTLC) was used to develop a comparative chromatogram/phytochemical fingerprint for the crude extracts obtained from two Aster species. A literature review was conducted to record their isolated phytochemicals and biological activities. Two Aster species possess macro- and microscopic features such as colour, appearance, and shape. Physicochemical analysis of crude drugs from two Aster species including HPTLC fingerprinting of their methanol crude extracts also yielded adequate data to differentiate and confirm two Aster species before adding them to the BSM poly-ingredient medicinal formulations. From the literature review, only A. flaccidus was found to be studied for its phytochemical constituents, whereby 11 pure compounds were isolated from aerial parts and roots. The current study revealed distinct species-specific distinguishing features, including ecological adaptation, micromorphology, anatomy, physicochemical values, HPTLC chromatograms. These parameters can be used to authenticate the species identity and prevent adulterations, thereby improving the quality and safety of BSM formulations.

7.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543070

RESUMO

Natural products (NPs) have played a vital role in human survival for millennia, particularly for their medicinal properties. Many traditional medicine practices continue to utilise crude plants and animal products for treating various diseases, including inflammation. In contrast, contemporary medicine focuses more on isolating drug-lead compounds from NPs to develop new and better treatment drugs for treating inflammatory disorders such as inflammatory bowel diseases. There is an ongoing search for new drug leads as there is still no cure for many inflammatory conditions. Various approaches and technologies are used in drug discoveries from NPs. This review comprehensively focuses on anti-inflammatory small molecules and describes the key strategies in identifying, extracting, fractionating and isolating small-molecule drug leads. This review also discusses the (i) most used approaches and recently available techniques, including artificial intelligence (AI), (ii) machine learning, and computational approaches in drug discovery; (iii) provides various animal models and cell lines used in in-vitro and in-vivo assessment of the anti-inflammatory potential of NPs.

8.
Life (Basel) ; 14(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38929693

RESUMO

Recent studies have shown that seagrasses could possess potential applications in the treatment of inflammatory disorders. Five seagrass species (Zostera muelleri, Halodule uninervis, Cymodocea rotundata, Syringodium isoetifolium, and Thalassia hemprichii) from the Great Barrier Reef (QLD, Australia) were thus collected, and their preliminary antioxidant and anti-inflammatory activities were evaluated. From the acetone extracts of five seagrass species subjected to 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging antioxidant assay, the extract of Z. muelleri had the highest activity (half minimal concentration of inhibition (IC50) = 138 µg/mL), with the aerial parts (IC50 = 119 µg/mL) possessing significantly higher antioxidant activity than the roots (IC50 ≥ 500 µg/mL). A human peripheral blood mononuclear cells (PBMCs) assay with bacterial lipopolysaccharide (LPS) activation and LEGENDplex cytokine analysis showed that the aerial extract of Z. muelleri significantly reduced the levels of inflammatory cytokines tumour necrosis factor alpha (TNF-α), interleukin (IL)-1ß, and IL-6 by 29%, 74%, and 90%, respectively, relative to the LPS treatment group. The aerial extract was thus fractionated with methanol (MeOH) and hexane fraction, and purification of the MeOH fraction by HPLC led to the isolation of 4-hydroxybenzoic acid (1), luteolin (2), and apigenin (3) as its major constituents. These compounds have been previously shown to reduce levels of TNF-α, IL-1ß, and IL-6 and represent some of the major bioactive components of Z. muelleri aerial parts. This investigation represents the first study of the antioxidant and anti-inflammatory properties of Z. muelleri and the first isolation of small molecules from this species. These results highlight the potential for using seagrasses in treating inflammation and the need for further investigation.

9.
Plants (Basel) ; 11(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36235388

RESUMO

Plants have been a vital source of natural antioxidants since ancient times. Plants growing under various abiotic stress conditions often produce more defensive secondary metabolites such as phenolics, flavonoids, and terpenoids during adaptation to the environment. Many of these secondary metabolites are known to possess antioxidant and anti-inflammatory properties. This study tested seven plants sourced from the mountaintop areas (above 1000 m elevation) of Mount Lewis National Park (falls under the Wet Tropics of Queensland), Australia, for their antioxidant and anti-inflammatory activities. Of the seven studied plants, hydroethanolic extracts of six plants (Leptospermum wooroonooran, Ceratopetalum hylandii, Linospadix apetiolatus, Garcinia brassii, Litsea granitica, and Polyscias willmottii) showed high 2,2-diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity in a dose-dependent (25-1000 µg/mL) manner. At the highest concentration of 1 mg/mL, the DPPH free radical scavenged percentage varied between 75.4% and 92.3%. Only the species Alyxia orophila was inactive in the DPPH free radical scavenging assay. Pseudo-IC50 values of the extracts' ferric reducing antioxidant power (FRAP) based on dose-response curves showed a significant positive correlation with total phenolic content. Five out of the seven plants, namely G. brassii, C. hylandii, L. apetiolatus, L. wooroonooran, and A. orophila, showed inhibitory effects on the secretion of proinflammatory cytokines, tumour necrosis factor (TNF), and interleukins (IL)-23 in a lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells (PBMCs) assay. The results of this study demonstrate the value of tropical mountaintop plants in the biodiscovery of antioxidant and anti-inflammatory lead compounds.

10.
Chem Biol Interact ; 368: 110124, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007634

RESUMO

Two new galloyl glucosides, galloyl-lawsoniaside A (4) and uromyrtoside (6), were isolated from the polar fraction of Uromyrtus metrosideros leaf extract along with another four previously identified phytochemicals (1, 2, 3, and 5). The structures of these six compounds were characterised using low and high-resolution mass spectrometry (L/HRMS) and 1D and 2D Nuclear Magnetic Resonance (NMR) spectroscopy. These compounds were not toxic to human peripheral blood mononuclear cells (PBMCs) at 10 µg/mL over 24 h, yet showed significant in vitro suppression of proinflammatory cytokines involved in the pathogenesis of inflammatory bowel disease (IBD). Specifically, the release of interferon γ (IFN-γ), interleukin (IL)-17A, and IL-8 from phorbol myristate acetate/ionomycin (P/I) and anti-CD3/anti-CD28-activated cells were significantly suppressed by compounds 4 and 5. Interestingly, no effect on tumour necrosis factor (TNF) release was observed. These results show that the newly characterised compound 4 has promising cytokine suppressive properties, which could be further investigated as a candidate for IBD treatment.


Assuntos
Doenças Inflamatórias Intestinais , Myrtaceae , Humanos , Leucócitos Mononucleares , Glucosídeos/farmacologia , Austrália , Citocinas , Anti-Inflamatórios/farmacologia , Doenças Inflamatórias Intestinais/patologia
11.
ACS Infect Dis ; 7(12): 3264-3276, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34767348

RESUMO

Hookworm infections affect millions of people worldwide and are responsible for impaired mental and physical growth in children, and anemias. There is no vaccine, and increasing anthelmintic drug resistance in nematodes of domestic animals, and reduced drug cure rates in nematode infections of humans is alarming. Despite this looming health problem, there is a significant knowledge gap in terms of nonproteinaceous "excretory/secretory products" (ESPs) and how they orchestrate a parasitic existence. In the current study, we have conducted the first metabolomic and lipidomic analysis of the infective third-stage filariform larvae (L3) of the predominant human hookworm Necator americanus using liquid chromatography-mass spectrometry. Altogether, we have identified a total of 645 small molecules that were mainly produced through amino acid and glycerophospholipid metabolism. Putatively, 495 metabolites were unique to the somatic tissue extract, and 34 metabolites were present only in the ESP component. More than 21 novel mass features with nitrogen and sulfur functional groups were detected in the ESP component for the first time from helminths. While this study could not establish the biological functions of the metabolites identified, literature searches revealed that these metabolites possess various biological properties, including anti-inflammatory activities. These metabolites are likely used by the parasite upon exposure to a host to facilitate skin penetration, passage through different tissues, and immune regulation in the small bowel. Overall, the results presented herein offer significant insight into the metabolome of N. americanus L3 and have the potential to instigate future work to establish biomarkers of infection. This area urgently needs attention, given the lack of sensitive point-of-care diagnostic tools.


Assuntos
Ancylostomatoidea , Infecções por Uncinaria , Animais , Cromatografia Líquida , Humanos , Lipidômica , Espectrometria de Massas , Metabolômica
12.
J Clin Med ; 9(5)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354192

RESUMO

Inflammatory bowel disease (IBD) is a chronic and life-long disease characterized by gastrointestinal tract inflammation. It is caused by the interplay of the host's genetic predisposition and immune responses, and various environmental factors. Despite many treatment options, there is no cure for IBD. The increasing incidence and prevalence of IBD and lack of effective long-term treatment options have resulted in a substantial economic burden to the healthcare system worldwide. Biologics targeting inflammatory cytokines initiated a shift from symptomatic control towards objective treatment goals such as mucosal healing. There are seven monoclonal antibody therapies excluding their biosimilars approved by the US Food and Drug Administration for induction and maintenance of clinical remission in IBD. Adverse side effects associated with almost all currently available drugs, especially biologics, is the main challenge in IBD management. Natural products have significant potential as therapeutic agents with an increasing role in health care. Given that natural products display great structural diversity and are relatively easy to modify chemically, they represent ideal scaffolds upon which to generate novel therapeutics. This review focuses on the pathology, currently available treatment options for IBD and associated challenges, and the roles played by natural products in health care. It discusses these natural products within the current biodiscovery research agenda, including the applications of drug discovery techniques and the search for next-generation drugs to treat a plethora of inflammatory diseases, with a major focus on IBD.

13.
Metabolites ; 10(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171998

RESUMO

Soil-transmitted helminths, including hookworms and whipworms, infect billions of people worldwide. Their capacity to penetrate and migrate through their hosts' tissues is influenced by the suite of molecules produced by the infective developmental stages. To facilitate a better understanding of the immunobiology and pathogenicity of human hookworms and whipworms, we investigated the metabolomes of the infective stage of Nippostrongylus brasiliensis third-stage larvae (L3) which penetrate the skin and Trichuris muris eggs which are orally ingested, using untargeted liquid chromatography-mass spectrometry (LC-MS). We identified 55 polar metabolites through Metabolomics Standard Initiative level-1 (MSI-I) identification from N. brasiliensis and T. muris infective stages, out of which seven were unique to excretory/secretory products (ESPs) of N. brasiliensis L3. Amino acids were a principal constituent (33 amino acids). Additionally, we identified 350 putative lipids, out of which 28 (all known lipids) were unique to N. brasiliensis L3 somatic extract and four to T. muris embryonated egg somatic extract. Glycerophospholipids and glycerolipids were the major lipid groups. The catalogue of metabolites identified in this study shed light on the biology, and possible therapeutic and diagnostic targets for the treatment of these critical infectious pathogens. Moreover, with the growing body of literature on the therapeutic utility of helminth ESPs for treating inflammatory diseases, a role for metabolites is likely but has received little attention thus far.

14.
J Ethnopharmacol ; 223: 99-112, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29751124

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Geological materials, such as minerals, have a long history of usage as ingredients in multicompound formulations of Himalayan Sowa Rigpa medicine - as well as in its localized form of Bhutanese traditional medicine (BTM) - for treating various disorders for over thousand years. Yet, hardly any scientific research has been done on their ethnopharmacological efficacy and chemistry. AIM OF THE STUDY: This study documents and correlates the rarely explored ethnopharmacological and chemical identification of various minerals and their ethnomedicinal uses in BTM formulations for the first time. MATERIAL AND METHODS: A five stage cross-disciplinary process was conducted as follows: (1) a review of classical literature of Sowa Rigpa texts (Tibetan medical texts, pharmacopoeias and formularies) that are still in use today; (2) listing of mineral ingredients according to Sowa Rigpa names, followed by identification with common English and chemical names, as well as re-translating their ethnomedical uses; (3) cross-checking the chemical names and chemical composition of identified Sowa Rigpa minerals with various geological mineral databases and mineral handbooks; (4) authentication and standardization of Sowa Rigpa names through open forum discussion with diverse BTM practitioners; (5) further confirmation of the chemical names of identified minerals by consulting different experts and pharmacognosists. RESULTS: Our current study lists 120 minerals as described in Sowa Rigpa medical textbooks most of which we were able to chemically identify, and of which 28 are currently used in BTM herbo-mineral formulations. Out of these 28 mineral ingredients, 5 originate from precious metal and stone, 10 stem from earth, mud and rocks, 8 are salts, and 5 concern 'essences' and exudates. CONCLUSIONS: Our study identified 120 mineral ingredients described in Sowa Rigpa medical textbooks, out of which 28 are currently used. They are crucial in formulating 108 multicompound prescription medicines in BTM presently in use for treating more than 135 biomedically defined ailments.


Assuntos
Medicina Tradicional , Minerais/uso terapêutico , Animais , Butão , Humanos , Minerais/química
15.
J Ethnopharmacol ; 207: 192-202, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28606809

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Bhutanese Sowa Rigpa medicine (BSM) uses animal parts in the preparation of numerous polyingredient traditional remedies. Our study reports the taxonomical identification of medicinal animals and the description of traditional uses in English medical terminologies. AIM OF THE STUDY: To taxonomically identify the medicinal animals and their derived natural products used as a zootherapeutic agents in BSM. MATERIALS AND METHODS: First, the traditional textbooks were reviewed to generate a list of animal products described as ingredients. Second, animal parts that are currently used in Bhutan were identified. Third, the ethnopharmacological uses of each animal ingredients were translated into English medical terminologies by consulting Traditional Physicians, clinical assistants, pharmacognosists, and pharmacists in Bhutan. Fourth, the animal parts were taxonomically identified and their Latin names were confirmed by crosschecking them with online animal databases and relevant scientific literature. RESULTS: The study found 73 natural products belonging to 29 categories derived from 45 medicinal animals (36 vertebrates and 9 invertebrates), comprising of 9 taxonomic categories and 30 zoological families. Out of 116 formulations currently produced, 87 of them contain one or more extracts and products obtained from 13 medicinal animals to treat more than 124 traditionally classified illnesses. Only five animal ingredients were found available in Bhutan and rest of the animal parts are being imported from India. CONCLUSIONS: Out of 73 natural products described in the traditional textbooks, only 13 of them (some omitted and few substituted by plants) are currently included in 87 formulations of BSM.


Assuntos
Produtos Biológicos/isolamento & purificação , Etnofarmacologia , Medicina Tradicional/métodos , Animais , Butão , Produtos Biológicos/classificação , Produtos Biológicos/farmacologia , Humanos , Farmacopeias como Assunto
16.
Integr Med Res ; 6(4): 372-387, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29296564

RESUMO

BACKGROUND: The Bhutanese Sowa Rigpa medicine (BSM) uses medicinal plants as the bulk ingredients. Our study was to botanically identify subtropical medicinal plants from the Lower Kheng region in Bhutan, transcribe ethnopharmacological uses, and highlight reported pharmacological activities of each plant. METHODS: We freely listed the medicinal plants used in the BSM literature, current formulations, and the medicinal plants inventory documents. This was followed by a survey and the identification of medicinal plants in the Lower Kheng region. The botanical identification of each medicinal plant was confirmed using The Plant List, eFloras, and TROPICOS. Data mining for reported pharmacological activities was performed using Google Scholar, Scopus, PubMed, and SciFinder Scholar. RESULTS: We identified 61 subtropical plants as the medicinal plants used in BSM. Of these, 17 plants were cultivated as edible plant species, 30 species grow abundantly, 24 species grow in moderate numbers, and only seven species were scarce to find. All these species grow within the altitude range of 100-1800 m above sea level. A total of 19 species were trees, and 13 of them were shrubs. Seeds ranked first in the parts usage category. Goshing Gewog (Block) hosted maximum number of medicinal plants. About 52 species have been pharmacologically studied and only nine species remain unstudied. CONCLUSION: Lower Kheng region is rich in subtropical medicinal plants and 30 species present immediate economic potential that could benefit BSM, Lower Kheng communities and other Sowa Rigpa practicing organizations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA