Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 50(2): 713-721, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35285506

RESUMO

Over the past decade, major efforts have been made to systematically survey the characteristics or phenotypes associated with genetic variation in a variety of model systems. These so-called phenomics projects involve the measurement of 'phenomes', or the set of phenotypic information that describes an organism or cell, in various genetic contexts or states, and in response to external factors, such as environmental signals. Our understanding of the phenome of an organism depends on the availability of reagents that enable systematic evaluation of the spectrum of possible phenotypic variation and the types of measurements that can be taken. Here, we highlight phenomics studies that use the budding yeast, a pioneer model organism for functional genomics research. We focus on genetic perturbation screens designed to explore genetic interactions, using a variety of phenotypic read-outs, from cell growth to subcellular morphology.


Assuntos
Fenômica , Saccharomyces cerevisiae , Redes Reguladoras de Genes , Genômica , Fenótipo , Saccharomyces cerevisiae/genética
2.
Cell Syst ; 12(6): 608-621, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34139168

RESUMO

Single-cell image analysis provides a powerful approach for studying cell-to-cell heterogeneity, which is an important attribute of isogenic cell populations, from microbial cultures to individual cells in multicellular organisms. This phenotypic variability must be explained at a mechanistic level if biologists are to fully understand cellular function and address the genotype-to-phenotype relationship. Variability in single-cell phenotypes is obscured by bulk readouts or averaging of phenotypes from individual cells in a sample; thus, single-cell image analysis enables a higher resolution view of cellular function. Here, we consider examples of both small- and large-scale studies carried out with isogenic cell populations assessed by fluorescence microscopy, and we illustrate the advantages, challenges, and the promise of quantitative single-cell image analysis.


Assuntos
Variação Biológica da População , Análise de Célula Única , Microscopia de Fluorescência , Fenótipo
3.
Elife ; 62017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29058668

RESUMO

Bre1, a conserved E3 ubiquitin ligase in Saccharomyces cerevisiae, together with its interacting partner Lge1, are responsible for histone H2B monoubiquitination, which regulates transcription, DNA replication, and DNA damage response and repair, ensuring the structural integrity of the genome. Deletion of BRE1 or LGE1 also results in whole chromosome instability. We discovered a novel role for Bre1, Lge1 and H2Bub1 in chromosome segregation and sister chromatid cohesion. Bre1's function in G1 and S phases contributes to cohesion establishment, but it is not required for cohesion maintenance in G2 phase. Bre1 is dispensable for the loading of cohesin complex to chromatin in G1, but regulates the localization of replication factor Mcm10 and cohesion establishment factors Ctf4, Ctf18 and Eco1 to early replication origins in G1 and S phases, and promotes cohesin subunit Smc3 acetylation for cohesion stabilization. H2Bub1 epigenetically marks the origins, potentially signaling the coupling of DNA replication and cohesion establishment.


Assuntos
Ciclo Celular , Cromátides/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/fisiologia , Segregação de Cromossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA