Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 22(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535479

RESUMO

Phycoerythrin and polysaccharides have significant commercial value in medicine, cosmetics, and food industries due to their excellent bioactive functions. To maximize the production of biomass, phycoerythrin, and polysaccharides in Porphyridium purpureum, culture media were supplemented with calcium gluconate (CG), magnesium gluconate (MG) and polypeptides (BT), and their optimal amounts were determined using the response surface methodology (RSM) based on three single-factor experiments. The optimal concentrations of CG, MG, and BT were determined to be 4, 12, and 2 g L-1, respectively. The RSM-based models indicated that biomass and phycoerythrin production were significantly affected only by MG and BT, respectively. However, polysaccharide production was significantly affected by the interactions between CG and BT and those between MG and BT, with no significant effect from BT alone. Using the optimized culture conditions, the maximum biomass (5.97 g L-1), phycoerythrin (102.95 mg L-1), and polysaccharide (1.42 g L-1) concentrations met and even surpassed the model-predicted maximums. After optimization, biomass, phycoerythrin, and polysaccharides concentrations increased by 132.3%, 27.97%, and 136.67%, respectively, compared to the control. Overall, this study establishes a strong foundation for the highly efficient production of phycoerythrin and polysaccharides using P. purpureum.


Assuntos
Gluconatos , Porphyridium , Ficoeritrina , Gluconato de Cálcio , Polissacarídeos
2.
Chemosphere ; 350: 141088, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163470

RESUMO

Recently, using microalgae to remediate heavy metal polluted water has been attained a huge attention. However, heavy metals are generally toxic to microalgae and consequently decrease biomass accumulation. To address this issue, the feasibility of adding exogenous glucose, employing algae-bacteria system and algae-bacteria-activated carbon consortium to enhance microalgae growth were evaluated. The result showed that Cd2+ removal efficiency was negatively correlated with microalgal specific growth rate. The exogenous glucose alleviated the heavy metal toxicity to algal cells and thus increased the microalgae growth rate. Among the different treatments, the algae-bacteria-activated carbon combination had the highest biomass concentration (1.15 g L-1) and lipid yield (334.97 mg L-1), which were respectively 3.03 times of biomass (0.38 g L-1) and 4.92 times of lipid yield (68.08 mg L-1) in the single microalgae treatment system. Additionally, this algae-bacteria-activated carbon consortium remained a high Cd2+ removal efficiency (91.61%). In all, the present study developed an approach that had a great potential in simultaneous heavy metal wastewater treatment and microalgal lipid production.


Assuntos
Metais Pesados , Microalgas , Cádmio/toxicidade , Carvão Vegetal , Biomassa , Metais Pesados/toxicidade , Lipídeos , Bactérias , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA