Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 488(1): 29-32, 2017 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-28478038

RESUMO

CONTEXT: An extensive body of literature indicates a relationship between insulin resistance and the up-regulation of the kynurenine pathway, i.e. the preferential conversion of tryptophan to kynurenine, with subsequent overproduction of diabetogenic downstream metabolites, such as kynurenic acid. CASE DESCRIPTION: We have measured the concentration of kynurenine pathway metabolites (kynurenines) in the brain and pancreas of two young (27 and 28 yrs) insulin resistant, normoglycemic subjects (M-values 2 and 4 mg/kg/min, respectively) using quantitative C-11-alpha-methyl-tryptophan PET/CT imaging. Both subjects underwent a preventive 12-week metformin treatment regimen (500 mg daily) prior to the PET/CT study. Whereas treatment was successful in one of the subject (M-value increased from 2 to 12 mg/kg/min), response was poor in the other subjects (M-value changed from 4 to 5 mg/kg/min). Brain and pancreas concentrations of kynurenines observed in the responder were similar to that in a healthy control subject, whereas kynurenines determined in the non-responder were about 25% higher and similar to those found in a severely insulin resistant patient. Consistent with this outcome, M-values were negatively correlated with both kynurenic acid levels (R2 = 0.68, p = 0.09) as well as with the kynurenine to tryptophan ratio (R2 = 0.63, p = 0.11). CONCLUSION: The data indicates that kynurenine pathway metabolites are increased in subjects with insulin resistance prior to overt manifestation of hyperglycemia. Moreover, successful metformin treatment leads to a normalization of tryptophan metabolism, most likely as a result of decreased contribution from the kynurenine metabolic pathway.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Resistência à Insulina , Cinurenina/metabolismo , Metformina/farmacologia , Adulto , Humanos , Metformina/administração & dosagem
2.
J Proteome Res ; 14(11): 4662-73, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26390080

RESUMO

The two key steps for analyzing proteomic data generated by high-resolution MS are database searching and postprocessing. While the two steps are interrelated, studies on their combinatory effects and the optimization of these procedures have not been adequately conducted. Here, we investigated the performance of three popular search engines (SEQUEST, Mascot, and MS Amanda) in conjunction with five filtering approaches, including respective score-based filtering, a group-based approach, local false discovery rate (LFDR), PeptideProphet, and Percolator. A total of eight data sets from various proteomes (e.g., E. coli, yeast, and human) produced by various instruments with high-accuracy survey scan (MS1) and high- or low-accuracy fragment ion scan (MS2) (LTQ-Orbitrap, Orbitrap-Velos, Orbitrap-Elite, Q-Exactive, Orbitrap-Fusion, and Q-TOF) were analyzed. It was found combinations involving Percolator achieved markedly more peptide and protein identifications at the same FDR level than the other 12 combinations for all data sets. Among these, combinations of SEQUEST-Percolator and MS Amanda-Percolator provided slightly better performances for data sets with low-accuracy MS2 (ion trap or IT) and high accuracy MS2 (Orbitrap or TOF), respectively, than did other methods. For approaches without Percolator, SEQUEST-group performs the best for data sets with MS2 produced by collision-induced dissociation (CID) and IT analysis; Mascot-LFDR gives more identifications for data sets generated by higher-energy collisional dissociation (HCD) and analyzed in Orbitrap (HCD-OT) and in Orbitrap Fusion (HCD-IT); MS Amanda-Group excels for the Q-TOF data set and the Orbitrap Velos HCD-OT data set. Therefore, if Percolator was not used, a specific combination should be applied for each type of data set. Moreover, a higher percentage of multiple-peptide proteins and lower variation of protein spectral counts were observed when analyzing technical replicates using Percolator-associated combinations; therefore, Percolator enhanced the reliability for both identification and quantification. The analyses were performed using the specific programs embedded in Proteome Discoverer, Scaffold, and an in-house algorithm (BuildSummary). These results provide valuable guidelines for the optimal interpretation of proteomic results and the development of fit-for-purpose protocols under different situations.


Assuntos
Algoritmos , Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Ferramenta de Busca/métodos , Software , Linhagem Celular Tumoral , Bases de Dados de Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteoma/genética , Proteoma/metabolismo , Proteômica/instrumentação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem
3.
Biomedicines ; 12(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791018

RESUMO

Antipsychotics are associated with severe metabolic side effects including insulin resistance; however, the mechanisms underlying this side effect are not fully understood. The skeletal muscle plays a critical role in insulin-stimulated glucose uptake, and changes in skeletal muscle DNA methylation by antipsychotics may play a role in the development of insulin resistance. A double-blind, placebo-controlled trial of olanzapine was performed in healthy volunteers. Twelve healthy volunteers were randomized to receive 10 mg/day of olanzapine for 7 days. Participants underwent skeletal muscle biopsies to analyze DNA methylation changes using a candidate gene approach for the insulin signaling pathway. Ninety-seven methylation sites were statistically significant (false discovery rate < 0.05 and beta difference between the groups of ≥10%). Fifty-five sites had increased methylation in the skeletal muscle of olanzapine-treated participants while 42 were decreased. The largest methylation change occurred at a site in the Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha (PPARGC1A) gene, which had 52% lower methylation in the olanzapine group. Antipsychotic treatment in healthy volunteers causes significant changes in skeletal muscle DNA methylation in the insulin signaling pathway. Future work will need to expand on these findings with expression analyses.

4.
ACS Omega ; 8(18): 16206-16217, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179642

RESUMO

The endothelium is the frontline target of multiple metabolic stressors and pharmacological agents. As a consequence, endothelial cells (ECs) display highly dynamic and diverse proteome profiles. We describe here the culture of human aortic ECs from healthy and type 2 diabetic donors, the treatment with a small molecular coformulation of trans-resveratrol and hesperetin (tRES+HESP), followed by proteomic analysis of whole-cell lysate. A number of 3666 proteins were presented in all of the samples and thus further analyzed. We found that 179 proteins had a significant difference between diabetic ECs vs. healthy ECs, while 81 proteins had a significant change upon the treatment of tRES+HESP in diabetic ECs. Among them, 16 proteins showed a difference between diabetic ECs and healthy ECs and the difference was reversed by the tRES+HESP treatment. Follow-up functional assays identified activin A receptor-like type 1 and transforming growth factor ß receptor 2 as the most pronounced targets suppressed by tRES+HESP in protecting angiogenesis in vitro. Our study has revealed the global differences in proteins and biological pathways in ECs from diabetic donors, which are potentially reversible by the tRES+HESP formula. Furthermore, we have identified the TGFß receptor as a responding mechanism in ECs treated with this formula, shedding light on future studies for deeper molecular characterization.

5.
ACS Omega ; 8(39): 35628-35637, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810667

RESUMO

Protein phosphatase 1 regulatory subunit 12A (PPP1R12A) interacts with the catalytic subunit of protein phosphatase 1 (PP1c) to form the myosin phosphatase complex. In addition to a well-documented role in muscle contraction, the PP1c-PPP1R12A complex is associated with cytoskeleton organization, cell migration and adhesion, and insulin signaling. Despite the variety of biological functions, only a few substrates of the PP1c-PPP1R12A complex are characterized, which limit a full understanding of PP1c-PPP1R12A activities in muscle contraction and cytoskeleton regulation. Here, the chemoproteomics method Kinase-catalyzed Biotinylation to Identify Phosphatase Substrates (K-BIPS) was used to identify substrates of the PP1c-PPP1R12A complex in L6 skeletal muscle cells. K-BIPS enriched 136 candidate substrates with 14 high confidence hits. One high confidence hit, AKT1 kinase, was validated as a novel PP1c-PPP1R12A substrate. Given the previously documented role of AKT1 in PPP1R12A phosphorylation and cytoskeleton organization, the data suggest that PP1c-PPP1R12A regulates its own phosphatase activity through an AKT1-dependent feedback mechanism to influence cytoskeletal arrangement in muscle cells.

6.
Proteome Sci ; 10(1): 52, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22937917

RESUMO

BACKGROUND: Protein phosphatase 1 (PP1) is one of the major phosphatases responsible for protein dephosphorylation in eukaryotes. Protein phosphatase 1 regulatory subunit 12B (PPP1R12B), one of the regulatory subunits of PP1, can bind to PP1cδ, one of the catalytic subunits of PP1, and modulate the specificity and activity of PP1cδ against its substrates. Phosphorylation of PPP1R12B on threonine 646 by Rho kinase inhibits the activity of the PP1c-PPP1R12B complex. However, it is not currently known whether PPP1R12B phosphorylation at threonine 646 and other sites is regulated by insulin. We set out to identify phosphorylation sites in PPP1R12B and to quantify the effect of insulin on PPP1R12B phosphorylation by using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. RESULTS: 14 PPP1R12B phosphorylation sites were identified, 7 of which were previously unreported. Potential kinases were predicted for these sites. Furthermore, relative quantification of PPP1R12B phosphorylation sites for basal and insulin-treated samples was obtained by using peak area-based label-free mass spectrometry of fragment ions. The results indicate that insulin stimulates the phosphorylation of PPP1R12B significantly at serine 29 (3.02 ± 0.94 fold), serine 504 (11.67 ± 3.33 fold), and serine 645/threonine 646 (2.34 ± 0.58 fold). CONCLUSION: PPP1R12B was identified as a phosphatase subunit that undergoes insulin-stimulated phosphorylation, suggesting that PPP1R12B might play a role in insulin signaling. This study also identified novel targets for future investigation of the regulation of PPP1R12B not only in insulin signaling in cell models, animal models, and in humans, but also in other signaling pathways.

7.
Pharmacotherapy ; 42(6): 504-513, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35508603

RESUMO

Antipsychotic medications demonstrate a variable range of efficacy and side effects in patients with mental illness. Research has attempted to identify biomarkers associated with antipsychotic effects in various populations. Research designs utilizing healthy volunteers may have the added benefit of measuring the effect of antipsychotics on a given biomarker (s) independent of the varied environmental and clinical factors that often accompany patient populations. The aim of this systematic review and meta-analysis was to synthesize the current evidence of hormonal, inflammatory, and metabolic biomarker studies of antipsychotic treatment in study designs using healthy volunteers. The systematic review was performed according to established guidelines and a random effects meta-analysis of biomarkers appearing in at least three studies was performed while biomarkers in two or less studies were qualitatively summarized. A total of 28 studies including 28 biomarkers were identified. Meta-analyses were carried out for 14 biomarkers, showing significant effects within six biomarkers (cortisol, C-peptide, free fatty acids, leptin, thyroid-stimulating hormone, and prolactin). Many of these effects were associated with olanzapine, the most used antipsychotic amongst the trials, observed on sub-analyses. When combining biomarkers into categories, some additional effects were observed, for example, when grouping inflammatory biomarkers. These findings suggest that antipsychotics exert potentially strong effects on several biomarkers of interest independent of psychiatric disease which could be used to spur future investigations, however, replication work is needed for many biomarkers included in this review.


Assuntos
Antipsicóticos , Antipsicóticos/efeitos adversos , Humanos , Olanzapina
8.
ACS Omega ; 7(47): 42763-42773, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467954

RESUMO

Skeletal muscle insulin resistance is a major contributor to type-2 diabetes (T2D). Pioglitazone is a potent insulin sensitizer of peripheral tissues by targeting peroxisome proliferator-activated receptor gamma. Pioglitazone has been reported to protect skeletal muscle cells from lipotoxicity by promoting fatty acid mobilization and insulin signaling. However, it is unclear whether pioglitazone increases insulin sensitivity through changes in protein-protein interactions involving protein phosphatase 2A (PP2A). PP2A regulates various cell signaling pathways such as insulin signaling. Interaction of the catalytic subunit of PP2A (PP2Ac) with protein partners is required for PP2A specificity and activity. Little is known about PP2Ac partners in primary human skeletal muscle cells derived from lean insulin-sensitive (Lean) and obese insulin-resistant (OIR) participants. We utilized a proteomics method to identify PP2Ac interaction partners in skeletal muscle cells derived from Lean and OIR participants, with or without insulin and pioglitazone treatments. In this study, 216 PP2Ac interaction partners were identified. Furthermore, 26 PP2Ac partners exhibited significant differences in their interaction with PP2Ac upon insulin treatments between the two groups. Multiple pathways and molecular functions are significantly enriched for these 26 interaction partners, such as nonsense-mediated decay, metabolism of RNA, RNA binding, and protein binding. Interestingly, pioglitazone restored some of these abnormalities. These results provide differential PP2Ac complexes in Lean and OIR in response to insulin/pioglitazone, which may help understand molecular mechanisms underpinning insulin resistance and the insulin-sensitizing effects of pioglitazone treatments, providing multiple targets in various pathways to reverse insulin resistance and prevent and/or manage T2D with less drug side effects.

9.
Brain Sci ; 12(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35204022

RESUMO

Atypical antipsychotics (AAP) are used in the treatment of severe mental illness. They are associated with several metabolic side effects including insulin resistance. The skeletal muscle is the primary tissue responsible for insulin-stimulated glucose uptake. Dysfunction of protein regulation within the skeletal muscle following treatment with AAPs may play a role in the associated metabolic side effects. The objective of this study was to measure protein abundance in the skeletal muscle of patients on long-term AAP or mood stabilizer treatment. Cross-sectional muscle biopsies were obtained from patients with bipolar disorder and global protein abundance was measured using stable isotope labeling by amino acid (SILAC) combined with high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Sixteen patients completed muscle biopsies and were included in the proteomic analyses. A total of 40 proteins were significantly different between the AAP group and the mood stabilizer group. In-silico pathway analysis identified significant enrichment in several pathways including glucose metabolism, cell cycle, apoptosis, and folate metabolism. Proteome abundance changes also differed based on protein biological processes and function. In summary, significant differences in proteomic profiles were identified in the skeletal muscle between patients on AAPs and mood stabilizers. Future work is needed to validate these findings in prospectively sampled populations.

10.
J Diabetes Res ; 2021: 9979234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368369

RESUMO

OBJECTIVE: To investigate if PP2A plays a role in metformin-induced insulin sensitivity improvement in human skeletal muscle cells. Participants. Eight lean insulin-sensitive nondiabetic participants (4 females and 4 males; age: 21.0 ± 1.0 years; BMI: 22.0 ± 0.7 kg/m2; 2-hour OGTT: 97.0 ± 6.0 mg/dl; HbA1c: 5.3 ± 0.1%; fasting plasma glucose: 87.0 ± 2.0 mg/dl; M value; 11.0 ± 1.0 mg/kgBW/min). DESIGN: A hyperinsulinemic-euglycemic clamp was performed to assess insulin sensitivity in human subjects, and skeletal muscle biopsy samples were obtained. Primary human skeletal muscle cells (shown to retain metabolic characteristics of donors) were cultured from these muscle biopsies that included 8 lean insulin-sensitive participants. Cultured cells were expanded, differentiated into myotubes, and treated with 50 µM metformin for 24 hours before harvesting. PP2Ac activity was measured by a phosphatase activity assay kit (Millipore) according to the manufacturer's protocol. RESULTS: The results indicated that metformin significantly increased the activity of PP2A in the myotubes for all 8 lean insulin-sensitive nondiabetic participants, and the average fold increase is 1.54 ± 0.11 (P < 0.001). CONCLUSIONS: These results provided the first evidence that metformin can activate PP2A in human skeletal muscle cells derived from lean healthy insulin-sensitive participants and may help to understand metformin's action in skeletal muscle in humans.


Assuntos
Metformina/farmacologia , Células Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Adulto , Células Cultivadas , Feminino , Humanos , Resistência à Insulina , Masculino , Células Musculares/enzimologia , Músculo Esquelético/enzimologia , Serina-Treonina Quinases TOR/fisiologia , Magreza , Adulto Jovem
11.
J Proteome Res ; 9(9): 4521-34, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20812759

RESUMO

Abnormalities in adipocytes play an important role in various conditions, including the metabolic syndrome, type 2 diabetes mellitus and cardiovascular disease, but little is known about alterations at the protein level. We therefore sought to (1) comprehensively characterize the human adipocyte proteome for the first time and (2) demonstrate feasibility of measuring adipocyte protein abundances by one-dimensional SDS-PAGE and high performance liquid chromatography-electron spray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS). In adipocytes isolated from approximately 0.5 g of subcutaneous abdominal adipose tissue of three healthy, lean subjects, we identified a total of 1493 proteins. Triplicate analysis indicated a 22.5% coefficient of variation of protein abundances. Proteins ranged from 5.8 to 629 kDa and included a large number of proteins involved in lipid metabolism, such as fatty acid transport, fatty acid oxidation, lipid storage, lipolysis, and lipid droplet maintenance. Furthermore, we found most glycolysis enzymes and numerous proteins associated with oxidative stress, protein synthesis and degradation as well as some adipokines. 22% of all proteins were of mitochondrial origin. These results provide the first detailed characterization of the human adipocyte proteome, suggest an important role of adipocyte mitochondria, and demonstrate feasibility of this approach to examine alterations of adipocyte protein abundances in human diseases.


Assuntos
Adipócitos Brancos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Proteoma/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Gordura Abdominal/citologia , Adipócitos Brancos/química , Animais , Humanos , Redes e Vias Metabólicas , Camundongos , Proteínas/química , Proteínas/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem
12.
J Vasc Surg ; 52(6): 1596-607, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20864298

RESUMO

OBJECTIVE: The present study was aimed at developing a new cell-permeant peptide inhibitor (MK2i) of the kinase that phosphorylates and activates heat-shock protein (HSP)27 (MAPKAP kinase II), and evaluating the ability of this peptide to inhibit HSP27 phosphorylation and intimal thickening. METHODS: The ability of MK2i to reduce HSP27 phosphorylation and cell migration was evaluated in A7R5 cells stimulated with arsenite or lysophosphatidic acid. Stable isotopic labeling using amino acids in cell culture, in combination with liquid chromatography mass spectrometry, was used to characterize the effect of MK2i on global protein expression in fibroblasts. The effect of MK2i on intimal thickening and connective tissue growth factor expression was evaluated in human saphenous vein (HSV) rings maintained with 30% fetal bovine serum for 14 days by light microscopy and immunoblotting. RESULTS: Pretreatment of cells with MK2i (10 µM) prior to arsenite or lysophosphatidic acid stimulation decreased phosphorylation of HSP27 (36% ± 9% and 33% ± 10%, respectively) compared with control (not pretreated) cells. MK2i also inhibited A7R5 migration, and downregulated the transforming growth factor-induced expression of collagen and fibronectin in keloid cells, two major matrix proteins involved in the development of intimal hyperplasia. Treatment of HSV segments with MK2i enhanced relaxation, reduced HSP27 phosphorylation (40% ± 17%), connective tissue growth factor expression (17% ± 5%), and intimal thickness (48.2% ± 10.5%) compared with untreated segments. On the other hand, treatment with a recombinant fusion protein containing a cell-permeant peptide attached to the HSP27 sequence increased intimal thickness of HSV segments by 48% ± 14%. CONCLUSION: Our results suggest that HSP27 may play a role in the development of processes leading to intimal hyperplasia in HSV, and reduction of HSP27 phosphorylation by MK2i may be a potential strategy to inhibit the development of intimal hyperplasia in HSV to prevent the autologous vascular graft failure.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Veia Safena/citologia , Túnica Íntima/patologia , Animais , Aorta/citologia , Arsenitos/farmacologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Inibidores Enzimáticos/farmacologia , Fibronectinas/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Humanos , Hiperplasia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Lisofosfolipídeos/farmacologia , Microscopia Confocal , Chaperonas Moleculares , Músculo Liso Vascular/citologia , Fosforilação/efeitos dos fármacos , Análise Serial de Proteínas , Proteínas Serina-Treonina Quinases/farmacologia , Ratos , Compostos de Sódio/farmacologia , Técnicas de Cultura de Tecidos , Túnica Íntima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
13.
Mol Cell Proteomics ; 7(2): 257-67, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17911086

RESUMO

Changes in protein abundance in skeletal muscle are central to a large number of metabolic and other disorders, including, and perhaps most commonly, insulin resistance. Proteomics analysis of human muscle is an important approach for gaining insight into the biochemical basis for normal and pathophysiological conditions. However, to date, the number of proteins identified by this approach has been limited, with 107 different proteins being the maximum reported so far. Using a combination of one-dimensional gel electrophoresis and high performance liquid chromatography electrospray ionization tandem mass spectrometry, we identified 954 different proteins in human vastus lateralis muscle obtained from three healthy, nonobese subjects. In addition to a large number of isoforms of contractile proteins, we detected all proteins involved in the major pathways of glucose and lipid metabolism in skeletal muscle. Mitochondrial proteins accounted for 22% of all proteins identified, including 55 subunits of the respiratory complexes I-V. Moreover, a number of enzymes involved in endocrine and metabolic signaling pathways as well as calcium homeostasis were identified. These results provide the most comprehensive characterization of the human skeletal muscle proteome to date. These data hold promise for future global assessment of quantitative changes in the muscle proteome of patients affected by disorders involving skeletal muscle.


Assuntos
Eletroforese em Gel de Poliacrilamida , Proteínas Musculares/análise , Músculo Esquelético/química , Proteoma/análise , Espectrometria de Massas por Ionização por Electrospray , Adulto , Cálcio/metabolismo , Cromatografia Líquida de Alta Pressão , Proteínas Contráteis/análise , Transporte de Elétrons , Proteínas da Matriz Extracelular/análise , Glucose/metabolismo , Homeostase , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I , Metabolismo dos Lipídeos , Pessoa de Meia-Idade , Peso Molecular , Proteínas Musculares/química , Fosforilação Oxidativa , Transporte Proteico , Proteoma/química , Proteômica , Frações Subcelulares
14.
Pharmacotherapy ; 40(4): 331-342, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32058614

RESUMO

The pharmacoepigenetics of antipsychotic treatment in severe mental illness is a growing area of research that aims to understand the interface between antipsychotic treatment and genetic regulation. Pharmacoepigenetics may some day assist in identifying treatment response mechanisms or become one of the components in the implementation of precision medicine. To understand the current evidence regarding the effects of antipsychotics on DNA methylation a systematic review with qualitative synthesis was performed through Pubmed, Embase and Psychinfo from earliest data to June 2019. Studies were included if they analyzed DNA methylation in an antipsychotic-treated population of patients with schizophrenia or bipolar disorder. Data extraction occurred via a standardized format and study quality was assessed. Twenty-nine studies were identified for inclusion. Study design, antipsychotic type, sample source, and methods of DNA methylation measurement varied across all studies. Eighteen studies analyzed methylation in patients with schizophrenia, four studies in patients with bipolar disorder, and seven studies in a combined sample of schizophrenia and bipolar disorder. Twenty-two studies used observational samples whereas the remainder used prospectively treated samples. Six studies assessed global methylation, five assessed epigenome-wide, and 15 performed a candidate epigenetic study. Two studies analyzed both global and gene-specific methylation, whereas one study performed a simultaneous epigenome-wide and gene-specific study. Only three genes were analyzed in more than one gene-specific study and the findings were discordant. The state of the pharmacoepigenetic literature on antipsychotic use is still in its early stages and uniform reporting of methylation site information is needed. Future work should concentrate on using prospective sampling with appropriate control groups and begin to replicate many of the novel associations that have been reported.


Assuntos
Antipsicóticos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Esquizofrenia/tratamento farmacológico , Antipsicóticos/farmacocinética , Humanos
15.
J Clin Endocrinol Metab ; 105(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31652310

RESUMO

CONTEXT: Obesity-related insulin resistance (OIR) is one of the main contributors to type 2 diabetes and other metabolic diseases. Protein kinases are implicated in insulin signaling and glucose metabolism. Molecular mechanisms underlying OIR involving global kinase activities remain incompletely understood. OBJECTIVE: To investigate abnormal kinase activity associated with OIR in human skeletal muscle. DESIGN: Utilization of stable isotopic labeling-based quantitative proteomics combined with affinity-based active enzyme probes to profile in vivo kinase activity in skeletal muscle from lean control (Lean) and OIR participants. PARTICIPANTS: A total of 16 nondiabetic adults, 8 Lean and 8 with OIR, underwent hyperinsulinemic-euglycemic clamp with muscle biopsy. RESULTS: We identified the first active kinome, comprising 54 active protein kinases, in human skeletal muscle. The activities of 23 kinases were different in OIR muscle compared with Lean muscle (11 hyper- and 12 hypo-active), while their protein abundance was the same between the 2 groups. The activities of multiple kinases involved in adenosine monophosphate-activated protein kinase (AMPK) and p38 signaling were lower in OIR compared with Lean. On the contrary, multiple kinases in the c-Jun N-terminal kinase (JNK) signaling pathway exhibited higher activity in OIR vs Lean. The kinase-substrate-prediction based on experimental data further confirmed a potential downregulation of insulin signaling (eg, inhibited phosphorylation of insulin receptor substrate-1 and AKT1/2). CONCLUSIONS: These findings provide a global view of the kinome activity in OIR and Lean muscle, pinpoint novel specific impairment in kinase activities in signaling pathways important for skeletal muscle insulin resistance, and may provide potential drug targets (ie, abnormal kinase activities) to prevent and/or reverse skeletal muscle insulin resistance in humans.


Assuntos
Resistência à Insulina , Músculo Esquelético/enzimologia , Obesidade/metabolismo , Proteínas Quinases/fisiologia , Proteoma , Proteínas Quinases Ativadas por AMP/fisiologia , Adulto , Feminino , Humanos , Masculino , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
16.
J Proteome Res ; 8(11): 4954-65, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19764811

RESUMO

Protein phosphorylation plays an essential role in signal transduction pathways that regulate substrate and energy metabolism, contractile function, and muscle mass in human skeletal muscle. Abnormal phosphorylation of signaling enzymes has been identified in insulin-resistant muscle using phosphoepitope-specific antibodies, but its role in other skeletal muscle disorders remains largely unknown. This may be in part due to insufficient knowledge of relevant targets. Here, we therefore present the first large-scale in vivo phosphoproteomic study of human skeletal muscle from 3 lean, healthy volunteers. Trypsin digestion of 3-5 mg human skeletal muscle protein was followed by phosphopeptide enrichment using SCX and TiO(2). The resulting phosphopeptides were analyzed by HPLC-ESI-MS/MS. Using this unbiased approach, we identified 306 distinct in vivo phosphorylation sites in 127 proteins, including 240 phosphoserines, 53 phosphothreonines, and 13 phosphotyrosines in at least 2 out of 3 subjects. In addition, 61 ambiguous phosphorylation sites were identified in at least 2 out of 3 subjects. The majority of phosphoproteins detected are involved in sarcomeric function, excitation-contraction coupling (the Ca(2+)-cycle), glycolysis, and glycogen metabolism. Of particular interest, we identified multiple novel phosphorylation sites on several sarcomeric Z-disk proteins known to be involved in signaling and muscle disorders. These results provide numerous new targets for the investigation of human skeletal muscle phosphoproteins in health and disease and demonstrate feasibility of phosphoproteomics research of human skeletal muscle in vivo.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Proteínas Musculares/análise , Músculo Esquelético/química , Fosfopeptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Adulto , Sequência de Aminoácidos , Biologia Computacional , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fosforilação , Proteoma/análise , Proteômica/métodos
17.
Mol Cell Endocrinol ; 494: 110489, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31202817

RESUMO

Rac1, a small G protein, regulates physiological insulin secretion from the pancreatic ß-cell. Interestingly, Rac1 has also been implicated in the onset of metabolic dysfunction of the ß-cell under the duress of hyperglycemia (HG). This study is aimed at the identification of interaction partners of Rac1 in ß-cells under basal and HG conditions. Using co-immunoprecipitation and UPLC-ESI-MS/MS, we identified 324 Rac1 interaction partners in INS-1832/13 cells, which represent the largest Rac1 interactome to date. Furthermore, we identified 27 interaction partners that exhibited increased association with Rac1 in ß-cells exposed to HG. Western blotting (INS-1832/13 cells, rat islets and human islets) and co-immunoprecipitation (INS-1832/13 cells) further validated the identity of these Rac1 interaction partners including regulators of GPCR-G protein-effector coupling in the islet. These data form the basis for future investigations on contributory roles of these Rac1-specific signaling pathways in islet ß-cell function in health and diabetes.


Assuntos
Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Proteômica , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/patologia , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
18.
Eur Neuropsychopharmacol ; 29(12): 1365-1373, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31635791

RESUMO

Both severe mental illness and atypical antipsychotics have been independently associated with insulin resistance and weight gain. Altered regulation of skeletal muscle DNA methylation may play a role. We aimed to evaluate DNA methylation modifications in human skeletal muscle samples to further understand its potential role in the metabolic burden observed in psychiatric patients and psychopharmacologic treatment. Subjects were included in our study if they had a bipolar diagnosis and were currently treated with a mood stabilizer or atypical antipsychotic. A healthy control group free of psychiatric or physical disease was also included for comparisons. Anthropometric, BMI and hemoglobin A1C (HbA1C%) were measured. Fasting skeletal muscle biopsies were obtained and methylation levels of 5-methycytosine (5-mC), 5-hydroxymethylcytosine (5-hmC) and 5-formylcytosine (5-fC) were measured. Skeletal muscle global methylation of 5-mC and 5-fC were significantly higher in bipolar subjects compared to healthy controls. 5-mC was significantly higher in the AAP group compared to the mood stabilizer group. Significant correlations were observed between 5-fC methylation and HbA1C%. Our findings suggest that psychiatric disease and treatment may influence some methylation measures in the skeletal muscle of patients with bipolar disorder, which may be further influenced by medication treatment.


Assuntos
Antipsicóticos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/metabolismo , Metilação de DNA/fisiologia , Músculo Esquelético/metabolismo , Adulto , Antipsicóticos/farmacologia , Transtorno Bipolar/genética , Estudos Transversais , Metilação de DNA/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Resultado do Tratamento
19.
Diabetes ; 68(6): 1287-1302, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30885990

RESUMO

Patient-derived progenitor cell (PC) dysfunction is severely impaired in diabetes, but the molecular triggers that contribute to mechanisms of PC dysfunction are not fully understood. Methylglyoxal (MGO) is one of the highly reactive dicarbonyl species formed during hyperglycemia. We hypothesized that the MGO scavenger glyoxalase 1 (GLO1) reverses bone marrow-derived PC (BMPC) dysfunction through augmenting the activity of an important endoplasmic reticulum stress sensor, inositol-requiring enzyme 1α (IRE1α), resulting in improved diabetic wound healing. BMPCs were isolated from adult male db/db type 2 diabetic mice and their healthy corresponding control db/+ mice. MGO at the concentration of 10 µmol/L induced immediate and severe BMPC dysfunction, including impaired network formation, migration, and proliferation and increased apoptosis, which were rescued by adenovirus-mediated GLO1 overexpression. IRE1α expression and activation in BMPCs were significantly attenuated by MGO exposure but rescued by GLO1 overexpression. MGO can diminish IRE1α RNase activity by directly binding to IRE1α in vitro. In a diabetic mouse cutaneous wound model in vivo, cell therapies using diabetic cells with GLO1 overexpression remarkably accelerated wound closure by enhancing angiogenesis compared with diabetic control cell therapy. Augmenting tissue GLO1 expression by adenovirus-mediated gene transfer or with the small-molecule inducer trans-resveratrol and hesperetin formulation also improved wound closure and angiogenesis in diabetic mice. In conclusion, our data suggest that GLO1 rescues BMPC dysfunction and facilitates wound healing in diabetic animals, at least partly through preventing MGO-induced impairment of IRE1α expression and activity. Our results provide important knowledge for the development of novel therapeutic approaches targeting MGO to improve PC-mediated angiogenesis and tissue repair in diabetes.


Assuntos
Células da Medula Óssea/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Endorribonucleases/genética , Lactoilglutationa Liase/genética , Neovascularização Fisiológica/genética , Proteínas Serina-Treonina Quinases/genética , Aldeído Pirúvico/metabolismo , Células-Tronco/metabolismo , Cicatrização/genética , Animais , Células da Medula Óssea/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos , Modelos Animais de Doenças , Endorribonucleases/metabolismo , Técnicas de Introdução de Genes , Técnicas de Transferência de Genes , Hesperidina/farmacologia , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Aldeído Pirúvico/farmacologia , Resveratrol/farmacologia , Pele/lesões , Células-Tronco/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões
20.
Metabolites ; 8(4)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30322152

RESUMO

Atypical antipsychotics (AAPs) are a class of medications associated with significant metabolic side effects, including insulin resistance. The aim of this study was to analyze the skeletal muscle lipidome of patients on AAPs, compared to mood stabilizers, to further understand the molecular changes underlying AAP treatment and side effects. Bipolar patients on AAPs or mood stabilizers underwent a fasting muscle biopsy and assessment of insulin sensitivity. A lipidomic analysis of total fatty acids (TFAs), phosphatidylcholines (PCs) and ceramides (CERs) was performed on the muscle biopsies, then lipid species were compared between treatment groups, and correlation analyses were performed with insulin sensitivity. TFAs and PCs were decreased and CERs were increased in the AAP group relative to those in the mood stabilizer group (FDR q-value <0.05). A larger number of TFAs and PCs were positively correlated with insulin sensitivity in the AAP group compared to those in the mood stabilizer group. In contrast, a larger number of CERs were negatively correlated with insulin sensitivity in the AAP group compared to that in the mood stabilizer group. The findings here suggest that AAPs are associated with changes in the lipid profiles of human skeletal muscle when compared to mood stabilizers and that these changes correlate with insulin sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA