Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 189(3): 1662-1676, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35166830

RESUMO

Under favorable moisture, temperature, and light conditions, gibberellin (GA) biosynthesis is induced and triggers seed germination. A major mechanism by which GA promotes seed germination is by promoting the degradation of the DELLA protein RGA-LIKE 2 (RGL2), a major repressor of germination in Arabidopsis (Arabidopsis thaliana) seeds. Analysis of seed germination phenotypes of constitutive photomorphogenic 1 (cop1) mutants and complemented COP1-OX/cop1-4 lines in response to GA and paclobutrazol (PAC) suggested a positive role for COP1 in seed germination and a relation with GA signaling. cop1-4 mutant seeds showed PAC hypersensitivity, but transformation with a COP1 overexpression construct rendered them PAC insensitive, with a phenotype similar to that of rgl2 mutant (rgl2-SK54) seeds. Furthermore, cop1-4 rgl2-SK54 double mutants showed a PAC-insensitive germination phenotype like that of rgl2-SK54, identifying COP1 as an upstream negative regulator of RGL2. COP1 interacted directly with RGL2, and in vivo this interaction was strongly enhanced by SUPPRESSOR OF PHYA-105 1. COP1 directly ubiquitinated RGL2 to promote its degradation. Moreover, GA stabilized COP1 with consequent RGL2 destabilization. By uncovering this COP1-RGL2 regulatory module, we reveal a mechanism whereby COP1 positively regulates seed germination and controls the expression of germination-promoting genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Giberelinas/metabolismo , Giberelinas/farmacologia , Sementes/metabolismo , Fatores de Transcrição/metabolismo
2.
Plant J ; 103(1): 7-20, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32369636

RESUMO

Nitrogen (N) is a major factor for plant development and productivity. However, the application of nitrogenous fertilizers generates environmental and economic problems. To cope with the increasing global food demand, the development of rice varieties with high nitrogen use efficiency (NUE) is indispensable for reducing environmental issues and achieving sustainable agriculture. Here, we report that the concomitant activation of the rice (Oryza sativa) Ammonium transporter 1;2 (OsAMT1;2) and Glutamate synthetase 1 (OsGOGAT1) genes leads to increased tolerance to nitrogen limitation and to better ammonium uptake and N remobilization at the whole plant level. We show that the double activation of OsAMT1;2 and OsGOGAT1 increases plant performance in agriculture, providing better N grain filling without yield penalty under paddy field conditions, as well as better grain yield and N content when plants are grown under N llimitations in field conditions. Combining OsAMT1;2 and OsGOGAT1 activation provides a good breeding strategy for improving plant growth, nitrogen use efficiency and grain productivity, especially under nitrogen limitation, through the enhancement of both nitrogen uptake and assimilation.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Glutamato Sintase/metabolismo , Nitrogênio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Ativação Enzimática , Mutação , Nitrogênio/deficiência , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Plântula/metabolismo
3.
Front Plant Sci ; 9: 364, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616070

RESUMO

In rice (Oryza sativa), moderate leaf rolling increases photosynthetic competence and raises grain yield; therefore, this important agronomic trait has attracted much attention from plant biologists and breeders. However, the relevant molecular mechanism remains unclear. Here, we isolated and characterized Rolled Fine Striped (RFS), a key gene affecting rice leaf rolling, chloroplast development, and reactive oxygen species (ROS) scavenging. The rfs-1 gamma-ray allele and the rfs-2 T-DNA insertion allele of RFS failed to complement each other and their mutants had similar phenotypes, producing extremely incurved leaves due to defective development of vascular cells on the adaxial side. Map-based cloning showed that the rfs-1 mutant harbors a 9-bp deletion in a gene encoding a predicted CHD3/Mi-2 chromatin remodeling factor belonging to the SNF2-ATP-dependent chromatin remodeling family. RFS was expressed in various tissues and accumulated mainly in the vascular cells throughout leaf development. Furthermore, RFS deficiency resulted in a cell death phenotype that was caused by ROS accumulation in developing leaves. We found that expression of five ROS-scavenging genes [encoding catalase C, ascorbate peroxidase 8, a putative copper/zinc superoxide dismutase (SOD), a putative SOD, and peroxiredoxin IIE2] decreased in rfs-2 mutants. Western-blot and chromatin immunoprecipitation (ChIP) assays demonstrated that rfs-2 mutants have reduced H3K4me3 levels in ROS-related genes. Loss-of-function in RFS also led to multiple developmental defects, affecting pollen development, grain filling, and root development. Our results suggest that RFS is required for many aspects of plant development and its function is closely associated with epigenetic regulation of genes that modulate ROS homeostasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA