Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Parasit Vectors ; 16(1): 59, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755348

RESUMO

BACKGROUND: Toxoplasmosis is a zoonotic parasitic disease caused by Toxoplasma gondii. Toxoplasma gondii infection of the lungs can lead to severe pneumonia. However, few studies have reported Toxoplasma pneumonia. Most reports were clinical cases due to the lack of a good disease model. Therefore, the molecular mechanisms, development, and pathological damage of Toxoplasma pneumonia remain unclear. METHODS: A mouse model of Toxoplasma pneumonia was established by nasal infection with T. gondii. The model was evaluated using survival statistics, lung morphological observation, and lung pathology examination by hematoxylin and eosin (H&E) and Evans blue staining at 5 days post-infection (dpi). Total RNA was extracted from the lung tissues of C57BL/6 mice infected with T. gondii RH and TGME49 strains at 5 dpi. Total RNA was subjected to transcriptome analysis by RNA sequencing (RNA-seq) followed by quantitative real-time polymerase chain reaction (qRT-PCR) validation. Transcript enrichment analysis was performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases to assess the biological relevance of differentially expressed transcripts (DETs). RESULTS: C57BL/6 mice infected with T. gondii via nasal delivery exhibited weight loss, ruffled fur, and respiratory crackles at 5 dpi. The clinical manifestations and lethality of RH strains were more evident than those of TGME49. H&E staining of lung tissue sections from mice infected with T. gondii at 5 dpi showed severe lymphocytic infiltration, pulmonary edema, and typical symptoms of pneumonia. We identified 3167 DETs and 1880 DETs in mice infected with the T. gondii RH and TGME49 strains, respectively, compared with the phosphate-buffered saline (PBS) control group at 5 dpi. GO and KEGG enrichment analyses of DETs showed that they were associated with the immune system and microbial infections. The innate immune, inflammatory signaling, cytokine-mediated signaling, and chemokine signaling pathways displayed high gene enrichment. CONCLUSION: In this study, we developed a new mouse model for Toxoplasma pneumonia. Transcriptome analysis helped to better understand the molecular mechanisms of the disease. These results provided DETs during acute T. gondii lung infection, which expanded our knowledge of host immune defenses and the pathogenesis of Toxoplasma pneumonia.


Assuntos
Pneumonia , Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Animais , Camundongos , Camundongos Endogâmicos C57BL , Perfilação da Expressão Gênica/métodos , RNA , Transcriptoma , Toxoplasmose Animal/parasitologia
2.
Cancer Immunol Res ; 8(11): 1426-1439, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933967

RESUMO

P2X7, a crucial sensor of extracellular ATP, is widely distributed in different immune cells as a potent stimulant of inflammation and immunity. P2X7 is also highly expressed in immunosuppressive cells such as tumor-associated macrophages (TAM) and even tumor cells. However, the function and potential applications of P2X7-mediated immunosuppressive responses in the tumor microenvironment remain unclear. Here, we demonstrated that P2X7 was highly expressed in TAMs and that P2X7 deficiency impaired the "M2-like" polarization of TAMs via downregulation of STAT6 and IRF4 phosphorylation both in vivo and in vitro P2X7 deficiency restricted the progression of urethane-induced lung carcinogenesis and Lewis lung cancer by decreasing tumor cell proliferation and angiogenesis, promoting T-cell mobilization, and reversing M2-like TAM polarization. Thus, deletion or blockade of P2X7 was therapeutic for lung cancer. Furthermore, resistance to both immunotherapy (anti-PD-1 antibody) and chemotherapy (cisplatin) was overcome by coadministration of the P2X7 inhibitors O-ATP, A-438079 hydrochloride, and A-740003. Therefore, our data revealed a vital role of P2X7 in tumor formation through regulating TAM polarization, suggesting the therapeutic potential of P2X7 blockade in patients with lung cancer.


Assuntos
Neoplasias Pulmonares/terapia , Ativação de Macrófagos/fisiologia , Receptores Purinérgicos P2X7/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout
3.
Mucosal Immunol ; 13(6): 892-907, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719411

RESUMO

Acute respiratory distress syndrome (ARDS) is a kind of comprehensive disease with excessive inflammation and high clinical mortality. Multiple immune cells are involved in the ARDS process. Amongst these populations, lung-resident alveolar macrophages (AMs) are known to participate in the regulation of ARDS. GPR84, a metabolite-sensing GPCR sensing medium-chain fatty acids (MCFAs), is highly expressed in LPS-challenged macrophages and considered as a pro-inflammatory receptor. In this study, it was hypothesized that Gpr84 may be involved in pulmonary homeostasis via its regulatory effect on the switch of AM status. In LPS-induced ALI mouse model, we identified the internal LPS-induced switch of AMs from CD11blo to more inflamed CD11bhi status, which is deeply related to the exacerbated imbalance of homeostasis in the lung injury process. Gpr84 was highly expressed in ALI lung tissues and involved in cytokine release, phagocytosis and status switch of AMs through positive regulatory crosstalk with TLR4-related pathways via CD14 and LBP, which relied on Akt, Erk1/2, and STAT3. If conserved in humans, GPR84 may represent a potential therapeutic target for ARDS.


Assuntos
Lesão Pulmonar Aguda/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Síndrome do Desconforto Respiratório/imunologia , Animais , Antígeno CD11b/metabolismo , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA