Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Psychiatry ; 24(1): 396, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802840

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a severe mental illness with high relapse rates and high mortality. Depression not only severely limits psychosocial functioning but also reduces quality of life. It can also negatively affect patients' clinical parameters, including lipid metabolism markers. This study aimed to investigate the prevalence and risk factors of hyperlipidemia (HL) in patients with MDD who were hospitalized for the first time. METHODS: In this study, we enrolled 981 patients with MDD who were hospitalized for the first time, collected their demographic data and biochemical indicators, and evaluated their clinical symptoms. We divided the patients into HL and non-HL subgroups based on whether they had co-morbid HL. We compared whether there were significant differences between the two groups regarding demographics and general clinical information. RESULTS: A total of 708 of 981 MDD patients were described as being in the hyperlipidemic group, with an incidence of 72.17%. Clinical Global Impression Scale-Severity of Illness (CGI-SI) score and Hamilton Depression Scale (HAMD) score are risk factors for co-morbid HL in patients with MDD. The area under the ROC curve for the CGI-SI and HAMD score and their combined discriminatory ability was approximately 63%, 67%, and 68%, respectively. CONCLUSION: The prevalence of HL was high in patients with MDD who were first hospitalized; Higher HAMD score and CGI-SI score were risk factors for the development of HL in MDD; The HAMD score and the CGI-SI score are predictive of the severity of HL.


Assuntos
Comorbidade , Transtorno Depressivo Maior , Dislipidemias , Hospitalização , Humanos , Transtorno Depressivo Maior/epidemiologia , Feminino , Masculino , Estudos Transversais , Prevalência , Pessoa de Meia-Idade , Adulto , Fatores de Risco , Dislipidemias/epidemiologia , Índice de Gravidade de Doença , Escalas de Graduação Psiquiátrica
2.
J Chem Phys ; 159(20)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37991158

RESUMO

Two-dimensional transition metal dichalcogenides and semiconductor metal oxides have shown great potential in photocatalysis. However, their stability and efficiency need to be further improved. In this paper, porous ZnO nanorods with high specific surface area were prepared from metal-organic framework ZIF-8 by a simple hydrothermal method. A MoS2/ZnO composite was constructed by loading MoS2 onto the surface of porous ZnO nanorods. Compared with ZnO materials prepared by other methods, MoS2/ZnO prepared in this paper exhibits superior photocatalytic performance. The enhanced photocatalytic activity of the MoS2/ZnO composite can be attributed to the formation of heterojunctions and strong interaction between them, which greatly facilitate the separation of electrons and holes at the contact interface. In addition, due to the wide absorption region of the visible spectrum, MoS2 can greatly broaden the light absorption range of the material after the formation of the composite material, increase the utilization rate of visible light, and reduce the combination of electrons and holes. This study provides a new way to prepare cheap and efficient photocatalysts.

3.
Phys Chem Chem Phys ; 24(26): 16183-16192, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749066

RESUMO

First-principles calculations based on density functional theory were utilized to study the performance of Na2ZrO3 (NZO) and yttrium-doped Na2ZrO3 (Y-NZO) as cathode materials for sodium ion batteries (SIBs), including the stability of the desodiated structures, desodiation energy, redox mechanism, and the diffusion of Na. When 62.5% sodium is removed from NZO, its structure and volume change little and the layered structure is retained, whereas the structure starts to distort and shift to the ZrO3 phase with the extraction of more than 62.5% sodium. As desodiation proceeds, oxygen anions act as the only redox center for charge compensation, yielding a high initial voltage of 4.03 eV vs. Na/Na+ by PBE + U-D3 functional and 4.82 eV vs. Na/Na+ by HSE06-D3 functional. When the desodiation content is less than 31.25%, O23- is formed with an O-O distance of 2.38 Å. At the desodiation content of 31.25%, peroxide dimer O22- starts to form; at the desodiation content of 56.25%, the O-O bond distance is further shortened to 1.3 Å, corresponding to the formation of superoxide O2-. However, for Y-NZO, the redox reaction firstly involves O2-/O1-, which does not occur in NZO. Peroxides and superoxides appear when the sodium removal concentration is 59.38% and 75%, respectively. This indicates that the O-O dimers appear in Y-NZO at much deeper sodium removal. The calculations of diffusion paths and barriers of Na ions in NZO by PBE + U-D3 predict that the barrier of Na escaping from the mixed layer to the Na layer in NZO is 0.48 eV (the reverse barrier is 0.76 eV), smaller than those of other O3-type layered transition metal compounds, such as Na2IrO3 and Na2RuO3. After yttrium doping, the diffusion of Na ions becomes easier, indicating that the Y-doping improves the diffusion ability. This investigation interprets the mechanism of oxygen oxidation of NZO as a cathode for SIBs, and provides theoretical support for a better design of Na-rich layered oxide Na2MO3 (M represents the transition metal element) in the future research.

4.
J Org Chem ; 86(21): 15284-15297, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34647457

RESUMO

Energy transfer plays a special role in photocatalysis by utilizing the potential energy of the excited state through indirect excitation, in which a photosensitizer determines the thermodynamic feasibility of the reaction. Bioinspired by the energy-transfer ability of natural product cercosporin, here we developed a green and highly efficient organic photosensitizer HiBRCP (hexaisobutyryl reduced cercosporin) through structural modification of cercosporin. After structural manipulation, its triplet energy was greatly improved, and then, it could markedly promote the efficient geometrical isomerization of alkenes from the E-isomer to the Z-isomer. Moreover, it was also effective for energy-transfer-mediated organometallic catalysis, which allowed realization of the cross-coupling of aryl bromides and carboxylic acids through efficient energy transfer from HiBRCP to nickel complexes. Thus, the study on the relationship between structural manipulation and their photophysical properties provided guidance for further modification of cercosporin, which could be applied to more meaningful and challenging energy-transfer reactions.


Assuntos
Alcenos , Níquel , Brometos , Catálise , Transferência de Energia
5.
Chem Rev ; 119(2): 797-828, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30295467

RESUMO

Transition metal complexes are of increasing interest as photosensitizers in photodynamic therapy (PDT) and, more recently, for photochemotherapy (PCT). In recent years, Ru(II) polypyridyl complexes have emerged as promising systems for both PDT and PCT. Their rich photochemical and photophysical properties derive from a variety of excited-state electronic configurations accessible with visible and near-infrared light, and these properties can be exploited for both energy- and electron-transfer processes that can yield highly potent oxygen-dependent and/or oxygen-independent photobiological activity. Selected examples highlight the use of rational design in coordination chemistry to control the lowest-energy triplet excited-state configurations for eliciting a particular type of photoreactivity for PDT and/or PCT effects. These principles are also discussed in the context of the development of TLD1433, the first Ru(II)-based photosensitizer for PDT to enter a human clinical trial. The design of TLD1433 arose from a tumor-centered approach, as part of a complete PDT package that includes the light component and the protocol for treating non-muscle invasive bladder cancer. Briefly, this review summarizes the challenges to bringing PDT into mainstream cancer therapy. It considers the chemical and photophysical solutions that transition metal complexes offer, and it puts into context the multidisciplinary effort needed to bring a new drug to clinical trial.


Assuntos
Complexos de Coordenação/uso terapêutico , Neoplasias/tratamento farmacológico , Elementos de Transição/química , Ensaios Clínicos como Assunto , Complexos de Coordenação/química , Humanos , Neoplasias/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Rutênio/química
6.
Inorg Chem ; 58(16): 10778-10790, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386351

RESUMO

A new family of cyclometalated ruthenium(II) complexes [Ru(N^N)2(C^N)]+ derived from the π-extended benzo[h]imidazo[4,5-f]quinolone ligand appended with thienyl groups (n = 1-4, compounds 1-4) was prepared and its members were characterized for their chemical, photophysical, and photobiological properties. The lipophilicities of 1-4, determined as octanol-water partition coefficients (log Po/w), were positive and increased with the number of thienyl units. The absorption and emission bands of the C^N compounds were red-shifted by up to 200 nm relative to the analogous Ru(II) diimine systems. All of the complexes exhibited dual emission with the intraligand fluorescence (1IL, C^N-based) shifting to lower energies with increasing n and the metal-to-ligand charge transfer phosphorescence (3MLCT, N^N-based) remaining unchanged. Compounds 1-3 exhibited excited state absorption (ESA) profiles consistent with lowest-lying 3MLCT states when probed by nanosecond transient absorption (TA) spectroscopy with 532 nm excitation and had contributions from 1IL(C^N) states with 355 nm excitation. These assignments were supported by the lifetimes observed (<10 ns for the 1IL states and around 20 ns for the 3MLCT states) as well as a noticeable ESA for 3 with 355 nm excitation that did not occur with 532 nm excitation. Compound 4 was the only member of the family with two 3MLCT emissive lifetimes (15, 110 ns), and the TA spectra collected with both 355 and 532 nm excitation was assigned to the 3IL state, which was corroborated by its 4-6 µs lifetime. The ESA for 4 had a rise time of approximately 10 ns and an initial decay of 110 ns, which suggests a possible 3MLCT-3IL excited state equilibrium that results in delayed emission from the 3MLCT state. Compound 4 was nontoxic toward human skin melanoma cells (SKMEL28) in the dark (EC50 = >300 µM); 1-3 were cytotoxic and yielded EC50 values between 1 and 20 µM. The photocytotoxicites with visible light ranged from 87 nM with a phototherapeutic index (PI) of 13 for 1 to approximately 1 µM (PI = >267) for 4. With red light, EC50 values varied from 270 nM (PI = 21) for 3 to 12 µM for 4 (PI = >25). The larger PIs for 4, especially with visible light, were attributed to the much lower dark cytotoxicity for this compound. Because the dark cytotoxicity contributes substantially to the observed photocytotoxicity for 1-3, it was not possible to assess whether the 3IL state of 4 led to a much more potent phototoxic mechanism in the absence of dark toxicity. There was no stark contrast in cellular uptake and accumulation by laser scanning confocal and differential interference contrast microscopy to explain the large differences in dark toxicities between 1-3 and 4. Nevertheless, the study highlights a new family of Ru(II) C^N complexes where π-conjugation beyond a certain point results in low dark cytotoxicity with high photocytotoxicity, opposing the notion that cyclometalated Ru(II) systems are too toxic to be phototherapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Quinolonas/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Luz , Estrutura Molecular , Processos Fotoquímicos , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Quinolonas/química , Rutênio/química
7.
Inorg Chem ; 58(5): 3156-3166, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30763081

RESUMO

This study investigates the correlation between photocytotoxicity and the prolonged excited-state lifetimes exhibited by certain Ru(II) polypyridyl photosensitizers comprised of π-expansive ligands. The eight metal complexes selected for this study differ markedly in their triplet state configurations and lifetimes. Human melanoma SKMEL28 and human leukemia HL60 cells were used as in vitro models to test photocytotoxicity induced by the compounds when activated by either broadband visible or monochromatic red light. The photocytotoxicities of the metal complexes investigated varied over 2 orders of magnitude and were positively correlated with their excited-state lifetimes. The complexes with the longest excited-state lifetimes, contributed by low-lying 3IL states, were the most phototoxic toward cancer cells under all conditions.


Assuntos
Complexos de Coordenação/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Polímeros/farmacologia , Piridinas/farmacologia , Rutênio/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Células HL-60 , Humanos , Ligantes , Estrutura Molecular , Processos Fotoquímicos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Polímeros/química , Piridinas/química , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química
8.
J Opt Soc Am A Opt Image Sci Vis ; 36(6): 1072-1078, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158139

RESUMO

The aberrated wavefront propagates along its normal. Both the magnitude and boundary change after the propagation. Wavefronts characterized by Zernike coefficients and a normalized pupil radius can also be represented by a bundle of feature rays normal to the local surface. A ray transfer matrix parameterized by the pupil radius and propagation distance is proposed to transfer these feature rays to obtain the slope and position data of the propagated feature rays. Numerical orthogonal Zernike gradient polynomials are derived to reconstruct the wavefront from the discrete data by using a numerical method. Two aberrated wavefronts are performed as examples to validate the accuracy and flexibility of the proposed numerical method.

9.
Inorg Chem ; 57(16): 9859-9872, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30091916

RESUMO

A series of cationic dinuclear iridium(III) complexes (Ir1-Ir5) bearing terpyridine-capped fluorenyl bridging ligands and different polypyridyl or cyclometalating terminal tridentate ligands were synthesized, characterized, and evaluated for their photophysical and photobiological activities. The influence of the bridging and terminal ligands on the photophysical properties of the complexes was investigated by UV-vis absorption, emission, and transient absorption spectroscopy and simulated by TDDFT calculations. All of the complexes displayed strong bridging-ligand localized visible 1π,π* absorption and red- or near-infrared phosphorescence as well as broad triplet excited-state absorption across both visible and NIR wavelengths. These triplet states were assigned as predominantly 3π,π* for Ir1 (τ = 3.1 µs) and Ir4 (τ = 48 µs) and 3CT (charge transfer) for Ir2, Ir3, and Ir5 (τ = 1.7-2.7 µs). Complexes Ir1-Ir5 acted as in vitro photodynamic therapy (PDT) agents toward human SK-MEL-28 melanoma cells when activated with visible light, with submicromolar photocytotoxicity and phototherapeutic indices ranging from 20 to almost 300. The in vitro PDT effects with visible light did not correlate with singlet oxygen (1O2) quantum yields or DNA photocleaving capacity probed under cell-free conditions. All of the Ir(III) complexes phosphoresced brightly when associated with compromised cells (with or without light treatment) and exhibited photoactivated cellular uptake, highlighting the theranostic potential of this new class of Ir(III) complex photosensitizers.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Irídio/química , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Antineoplásicos/toxicidade , Linhagem Celular Tumoral/patologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Complexos de Coordenação/toxicidade , DNA/química , Humanos , Ligantes , Luz , Modelos Químicos , Estrutura Molecular , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/toxicidade , Plasmídeos/química , Teoria Quântica , Oxigênio Singlete/metabolismo , Nanomedicina Teranóstica
10.
Inorg Chem ; 57(13): 7694-7712, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29927243

RESUMO

The photophysical and photobiological properties of a new class of cyclometalated ruthenium(II) compounds incorporating π-extended benzo[ h]imidazo[4,5- f]quinoline (IBQ) cyclometalating ligands (C^N) bearing thienyl rings ( n = 1-4, compounds 1-4) were investigated. Their octanol-water partition coefficients (log Po/w) were positive and increased with n. Their absorption and emission energies were red-shifted substantially compared to the analogous Ru(II) diimine (N^N) complexes. They displayed C^N-based intraligand (IL) fluorescence and triplet excited-state absorption that shifted to longer wavelengths with increasing n and N^N-based metal-to-ligand charge transfer (MLCT) phosphorescence that was independent of n. Their photoluminescence lifetimes (τem) ranged from 4-10 ns for 1IL states and 12-18 ns for 3MLCT states. Transient absorption lifetimes (τTA) were 5-8 µs with 355 nm excitation, ascribed to 3IL states that became inaccessible for 1-3 with 532 nm excitation (1-3, τTA = 16-17 ns); the 3IL of 4 only was accessible by lower energy excitation, τTA = 3.8 µs. Complex 4 was nontoxic (EC50 > 300 µM) to SK-MEL-28 melanoma cells and CCD1064-Sk normal skin fibroblasts in the dark, while 3 was selectively cytotoxic to melanoma (EC50= 5.1 µM) only. Compounds 1 and 2 were selective for melanoma cells in the dark, with submicromolar potencies (EC50 = 350-500 nM) and selectivity factors (SFs) around 50. The photocytotoxicities of compounds 1-4 toward melanoma cells were similar, but only compounds 3 and 4 displayed significant phototherapeutic indices (PIs; 3, 43; 4, >1100). The larger cytotoxicities for compounds 1 and 2 were attributed to increased cellular uptake and nuclear accumulation, and possibly related to the DNA-aggregating properties of all four compounds as demonstrated by cell-free gel mobility-shift assays. Together, these results demonstrate a new class of thiophene-containing Ru(II) cyclometalated compounds that contain both highly selective chemotherapeutic agents and extremely potent photocytotoxic agents.


Assuntos
Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Rutênio/química , Tiofenos/química , Linhagem Celular Tumoral , Humanos , Interações Hidrofóbicas e Hidrofílicas , Oxigênio Singlete/metabolismo
11.
Zhongguo Zhong Yao Za Zhi ; 43(21): 4240-4247, 2018 Nov.
Artigo em Zh | MEDLINE | ID: mdl-30583624

RESUMO

The qualitative analysis method of RRLC-Q-TOF-MS/MS was established for determine the chemical constituents in Qige Keli. Kramosil C18 column (4.6 mm×150 mm, 3.5 µm) was used at the temperature of 30 °C. The mobile phase was 0.2% formic acid and acetonitrile by gradient elution, with a flow rate at 1.0 mL·min⁻¹, and the injection volume was 10 µL. The high-resolution quadrupole time-flight mass spectrometry was used as detector with electrospray ion source in both positive and negative models. On the basis of medicinal materials, reference materials, literature reports, and mass spectrometry data, the chemical composition in the Qige Keli was identified. A total of 44 compounds were identified, including 3 flavonoids, 21 flavonoid glycosides, 8 organic acids, 6 lactones, and 3 saponins. The results laid the foundation for the quality control of Qige Keli and the further research on pharmacodynamic materials.


Assuntos
Medicamentos de Ervas Chinesas/química , Compostos Fitoquímicos/análise , Ácidos/análise , Flavonoides/análise , Glicosídeos/análise , Lactonas/análise , Saponinas/análise , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
12.
Inorg Chem ; 56(7): 4121-4132, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28301148

RESUMO

The synthesis and characterization of a series of heteroleptic ruthenium(II) dyads derived from pyrrole-2-carboxylate thionoesters are reported. Ligands bearing a conjugated thiocarbonyl group were found to be more reactive toward Ru(II) complexation compared to analogous all-oxygen pyrrole-2-carboxylate esters, and salient features of the resulting complexes were determined using X-ray crystallography, electronic absorption, and NMR spectroscopy. Selected complexes were evaluated for their potential in photobiological applications, whereupon all compounds demonstrated in vitro photodynamic therapy effects in HL-60 and SK-MEL-28 cells, with low nanomolar activities observed, and exhibited some of the largest photocytotoxicity indices to date (>2000). Importantly, the Ru(II) dyads could be activated by relatively soft doses of visible (100 J cm-2, 29 mW cm-2) or red light (100 J cm-2, 34 mW cm-2), which is compatible with therapeutic applications. Some compounds even demonstrated up to five-fold selectivity for malignant cells over noncancerous cells. These complexes were also shown to photocleave, and in some cases unwind, DNA in cell-free experiments. Thus, this new class of Ru(II) dyads has the capacity to interact with and damage biological macromolecules in the cell, making them attractive agents for photodynamic therapy.

13.
Inorg Chem ; 56(6): 3245-3259, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28263079

RESUMO

Five heteroleptic tris-diimine ruthenium(II) complexes [RuL(N^N)2](PF6)2 (where L is 3,8-di(benzothiazolylfluorenyl)-1,10-phenanthroline and N^N is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), 1,4,8,9-tetraazatriphenylene (tatp) (3), dipyrido[3,2-a:2',3'-c]phenazine (dppz) (4), or benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (dppn) (5), respectively) were synthesized. The influence of π-conjugation of the ancillary ligands (N^N) on the photophysical properties of the complexes was investigated by spectroscopic methods and simulated by density functional theory (DFT) and time-dependent DFT. Their ground-state absorption spectra were characterized by intense absorption bands below 350 nm (ligand L localized 1π,π* transitions) and a featureless band centered at ∼410 nm (intraligand charge transfer (1ILCT)/1π,π* transitions with minor contribution from metal-to-ligand charge transfer (1MLCT) transition). For complexes 4 and 5 with dppz and dppn ligands, respectively, broad but very weak absorption (ε < 800 M-1 cm-1) was present from 600 to 850 nm, likely emanating from the spin-forbidden transitions to the triplet excited states. All five complexes showed red-orange phosphorescence at room temperature in CH2Cl2 solution with decreased lifetimes and emission quantum yields, as the π-conjugation of the ancillary ligands increased. Transient absorption (TA) profiles were probed in acetonitrile solutions at room temperature for all of the complexes. Except for complex 5 (which showed dppn-localized 3π,π* absorption with a long lifetime of 41.2 µs), complexes 1-4 displayed similar TA spectral features but with much shorter triplet lifetimes (1-2 µs). Reverse saturable absorption (RSA) was demonstrated for the complexes at 532 nm using 4.1 ns laser pulses, and the strength of RSA decreased in the order: 2 ≥ 1 ≈ 5 > 3 > 4. Complex 5 is particularly attractive as a broadband reverse saturable absorber due to its wide optical window (430-850 nm) and long-lived triplet lifetime in addition to its strong RSA at 532 nm. Complexes 1-5 were also probed as photosensitizing agents for in vitro photodynamic therapy (PDT). Most of them showed a PDT effect, and 5 emerged as the most potent complex with red light (EC50 = 10 µM) and was highly photoselective for melanoma cells (selectivity factor, SF = 13). Complexes 1-5 were readily taken up by cells and tracked by their intracellular luminescence before and after a light treatment. Diagnostic intracellular luminescence increased with increased π-conjugation of the ancillary N^N ligands despite diminishing cell-free phosphorescence in that order. All of the complexes penetrated the nucleus and caused DNA condensation in cell-free conditions in a concentration-dependent manner, which was not influenced by the identity of N^N ligands. Although the mechanism for photobiological activity was not established, complexes 1-5 were shown to exhibit potential as theranostic agents. Together the RSA and PDT studies indicate that developing new agents with long intrinsic triplet lifetimes, high yields for triplet formation, and broad ground-state absorption to near-infrared (NIR) in tandem is a viable approach to identifying promising agents for these applications.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Rutênio/farmacologia , Absorção Fisico-Química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Teoria Quântica , Rutênio/química , Relação Estrutura-Atividade
14.
Inorg Chem ; 55(1): 83-95, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26672769

RESUMO

The purpose of the present study was to investigate the influence of π-expansive cyclometalating ligands on the photophysical and photobiological properties of organometallic Ru(II) compounds. Four compounds with increasing π conjugation on the cyclometalating ligand were prepared, and their structures were confirmed by HPLC, 1D and 2D (1)H NMR, and mass spectrometry. The properties of these compounds differed substantially from their Ru(II) polypyridyl counterparts. Namely, they were characterized by red-shifted absorption, very weak to no room temperature phosphorescence, extremely short phosphorescence state lifetimes (<10 ns), low singlet oxygen quantum yields (0.5-8%), and efficient ligand-centered fluorescence. Three of the metal complexes were very cytotoxic to cancer cells in the dark (EC50 values = 1-2 µM), in agreement with what has traditionally been observed for Ru(II) compounds derived from small C^N ligands. Surprisingly, the complex derived from the most π-expansive cyclometalating ligand exhibited no cytotoxicity in the dark (EC50 > 300 µM) but was phototoxic to cells in the nanomolar regime. Exceptionally large phototherapeutic margins, exceeding 3 orders of magnitude in some cases, were accompanied by bright ligand-centered intracellular fluorescence in cancer cells. Thus, Ru(II) organometallic systems derived from π-expansive cyclometalating ligands, such 4,9,16-triazadibenzo[a,c]napthacene (pbpn), represent the first class of potent light-responsive Ru(II) cyclometalating agents with theranostic potential.


Assuntos
Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Compostos de Rutênio/química , Nanomedicina Teranóstica , Ligantes , Compostos Organometálicos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Compostos de Rutênio/farmacologia , Espectrometria de Massas por Ionização por Electrospray
15.
Bioorg Med Chem ; 24(5): 929-37, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26810709

RESUMO

Small-molecule fluorescent reporters of disease states are highly sought after, yet they remain elusive. Anthranilic acids are extremely sensitive environmental probes, and hold promise as general but selective agents for cancer-cell detection if they can be equipped with the appropriate targeting groups. The optical properties of a small library of N-isopropyl invariant anthranilic acids were investigated in methanol and chloroform. Points of variation included: fluoro, trifluoromethyl, or cyano substitution on the aromatic ring, and derivitization of the parent carboxylic acid as esters or secondary carboxamides. Phenylboronic acid conjugation at the carboxylic acid alongside un-, mono-, and dimethylated 2-amino groups was also explored. The boron-containing anthranilic acids were also evaluated as sensitive fluorescent probes for cancer cells using laser scanning confocal microscopy. In general, the compounds produced blue fluorescence that was strongly influenced by substitution and environment. 4-Trifluoromethyl and 4-cyano esters proved to be the most sensitive environmental probes with quantum yields as large as 100% in chloroform, and enhancements of up to 30-fold on going from methanol to chloroform. Stokes shifts ranged from 63 to 120nm, generally increasing with ortho-substitution and environmental polarity. It was demonstrated that phenylboronic acid conjugation was an attractive method for cancer cell detection via boronate ester formation with overexpressed glycoproteins (with no interference from normal, healthy cells), presumably due to favorable boron-sialic acid interactions.


Assuntos
Ácidos Borônicos/química , Corantes Fluorescentes/química , Neoplasias/diagnóstico , ortoaminobenzoatos/química , Linhagem Celular Tumoral , Humanos , Microscopia Confocal , Microscopia de Fluorescência
16.
J Am Chem Soc ; 137(9): 3271-5, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25692677

RESUMO

Jadomycin Oct (1) was isolated from Streptomyces venezuelae ISP5230 and characterized as a structurally unique eight-membered l-ornithine ring-containing jadomycin. The structure was elucidated through the semisynthetic derivatization of starting material via chemoselective acylation of the l-ornithine α-amino group using activated succinimidyl esters. Incorporation of 5-aminovaleric acid led to jadomycin AVA, a second eight-membered ring-containing jadomycin. These natural products illustrate the structural diversity permissible from a non-enzymatic step within a biosynthetic pathway and exemplifies the potential for discovery of novel scaffolds.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Streptomyces/metabolismo , Acilação , Aminoácidos Neutros/química , Antineoplásicos/química , Produtos Biológicos/síntese química , Linhagem Celular Tumoral/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fermentação , Compostos Heterocíclicos de 4 ou mais Anéis/isolamento & purificação , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Ornitina/química , Streptomyces/crescimento & desenvolvimento , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
17.
J Nat Prod ; 78(6): 1208-14, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26035093

RESUMO

Streptomyces venezuelae ISP5230 was grown in the presence of phenylalanine analogues to observe whether they could be incorporated into novel jadomycin structures. It was found that the bacteria successfully produced jadomycins incorporating 4-aminophenylalanine enantiomers. Upon isolation and characterization of jadomycin 4-amino-l-phenylalanine (1), it was synthetically derivatized, using activated succinimidyl esters, to yield a small jadomycin amide library. These are the first examples of oxazolone-ring-containing jadomycins that have incorporated an amino functionality subsequently used for derivatization.


Assuntos
Isoquinolinas/química , Naftoquinonas/química , Fenilalanina/análogos & derivados , Streptomyces/química , Isoquinolinas/síntese química , Estrutura Molecular , Naftoquinonas/síntese química , Ressonância Magnética Nuclear Biomolecular , Oxazolona/química , Fenilalanina/síntese química , Fenilalanina/química , Streptomyces/crescimento & desenvolvimento
18.
Inorg Chem ; 53(9): 4548-59, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24725142

RESUMO

The purpose of the present investigation was to ascertain whether (3)IL excited states with microsecond lifetimes are universally potent for photodynamic applications, and if these long-lived states are superior to their (3)MLCT counterparts as in vitro PDT agents. A family of blue-green absorbing, Ru(II)-based transition metal complexes derived from the π-expansive dppn ligand was prepared and characterized according to its photodynamic activity against HL-60 cells, and toward DNA in cell-free media. Complexes in this series that are characterized by low-energy and long-lived (3)IL excited states photocleaved DNA with blue, green, red, and near-IR light. This panchromatic photodynamic effect translated to in vitro multiwavelength photodynamic therapy (PDT) with red-light cytotoxicities as low as 1.5 µM (EC50) for the parent complex and 400 nM for its more lipophilic counterpart. This potency is similar to that achieved with Ru(II)-based dyads containing long-lived (3)IL excitons located on appended pyrenyl units, and appears to be a general property of sufficiently long-lived excited states. Moreover, the red PDT observed for certain members of this family was almost 5 times more potent than Photofrin with therapeutic indices 30 times greater. Related Ru(II) complexes having lowest-lying (3)MLCT states of much shorter duration (≤1 µs) did not yield DNA photodamage or in vitro PDT with red or near-IR light, nor did the corresponding Os(II) complex with a submicrosecond (3)IL excited state lifetime. Therefore, metal complexes that utilize highly photosensitizing (3)IL excited states, with suitably long lifetimes (≫ 1 µs), are well-poised to elicit PDT at wavelengths even where their molar extinction coefficients are very low (<100 M(-1) cm(-1)). Herein we demonstrate that such unexpected reactivity gives rise to very effective PDT in the typical therapeutic window (600-850 nm).


Assuntos
Fotoquimioterapia , DNA/efeitos dos fármacos , Células HL-60 , Humanos , Espectroscopia de Prótons por Ressonância Magnética
19.
J Phys Chem A ; 118(45): 10507-21, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24927113

RESUMO

Combining the best attributes of organic photosensitizers with those of coordination complexes is an elegant way to achieve prolonged excited state lifetimes in Ru(II) dyads. Not only do their reduced radiative and nonradiative rates provide ample time for photosensitization of reactive oxygen species at low oxygen tension but they also harness the unique properties of (3)IL states that can act as discrete units or in concert with (3)MLCT states. The imidazo[4,5-f][1,10]phenanthroline framework provides a convenient tether for linking π-expansive ligands such as pyrene to a Ru(II) scaffold, and the stabilizing coligands can fine-tune the chemical and biological properties of these bichromophoric systems. The resulting dyads described in this study exhibited nanomolar light cytotoxicities against cancer cells with photocytotoxicity indices exceeding 400 for some coligands employed. This potency extended to bacteria, where concentrations as low as 10 nM destroyed 75% of a bacterial population. Notably, these dyads remained extremely active against biofilm with light photocytotoxicities against these more resistant bacterial populations in the 10-100 nM regime. The results from this study demonstrate the versatility of these highly potent photosensitizers in destroying both cancer and bacterial cells and expand the scope of compounds that utilize low-lying (3)IL states for photobiological applications.


Assuntos
Fenantrolinas/química , Fármacos Fotossensibilizantes/química , Compostos de Rutênio/química , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Bovinos , Sobrevivência Celular/efeitos dos fármacos , DNA/química , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Células HL-60 , Humanos , Fenantrolinas/síntese química , Fenantrolinas/farmacologia , Processos Fotoquímicos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Compostos de Rutênio/síntese química , Compostos de Rutênio/farmacologia , Streptococcus mutans/efeitos dos fármacos , Timo , Raios Ultravioleta
20.
Molecules ; 19(3): 3718-30, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24662084

RESUMO

The stems of Dendrobium officinale Kimura et Migo, named Tie-pi-shi-hu, is one of the most endangered and precious species in China. Because of its various pharmacodynamic effects, D. officinale is widely recognized as a high-quality health food in China and other countries in south and south-east Asia. With the rising interest of D. officinale, its products have a high price due to a limited supply. This high price has led to the proliferation of adulterants in the market. To ensure the safe use of D. officinale, a fast and convenient method combining normal and fluorescence microscopy was applied in the present study to distinguish D. officinale from three commonly used adulterants including Zi-pi-shi-hu (D. devonianum), Shui-cao-shi-hu (D. aphyllum), Guang-jie-shi-hu (D. gratiosissimum). The result demonstrated that D. officinale could be identified by the characteristic "two hat-shaped" vascular bundle sheath observed under the fluorescence microscopy and the distribution of raphides under normal light microscopy. The other three adulterants could be discriminated by the vascular bundle differences and the distribution of raphides under normal light microscopy. This work indicated that combination of normal light and fluorescence microscopy is a fast and efficient technique to scientifically distinguish D. officinale from the commonly confused species.


Assuntos
Dendrobium/classificação , Dendrobium/citologia , Microscopia/métodos , Dendrobium/anatomia & histologia , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA