Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 549, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723489

RESUMO

E2 ubiquitin conjugating enzymes and E3 ubiquitin ligases play important roles in the growth and development of plants and animals. To date, the systematic analysis of E2 and E3 genes in Rhodophyta is limited. In this study, 14 E2 genes and 51 E3 genes were identified in Gracilariopsis lemaneiformis, an economically important red alga. E2 genes were classified into four classes according to the structure of the conserved domain, UBC. E3 genes were classified into 12 subfamilies according to individual conserved domains. A phylogenetic tree of seven algae species showed that functional differentiation of RING-type E3s was the highest, and the similarity between orthologous genes was high except in Chlamydomonas reinhardtii and Chara braunii. RNA-seq data analysis showed significant differential expression levels of E2 and E3 genes under the life stages of tetraspore formation and release, especially GlUBCN and GlAPC3. According to GO and KEGG analysis of two transcriptomes, GlUBCN and GlAPC3 were involved in ubiquitin-mediated proteolysis, and other subunits of the anaphase promoting complex or cyclosome (APC/C) and its activators GlCDC20 and GlCDH1 were also enriched into this process. The CDH1 and CDC20 in 981 were down-regulated during tetraspores formation and release, with the down-regulation of CDH1 being particularly significant; CDH1 and CDC20 in WLP-1, ZC, and WT were up-regulated during tetraspores formation and release, with CDC20 being more significantly up-regulated. Therefore, GlCDH1, rather than GlCDC20, in '981' might play the leading role in the activation of the APC/C, and GlCDC20 might play the leading role rather than GlCDH1 in strains WLP-1, ZC and wild type. The low fertility of cultivar 981 might be highly correlated with the inactivity of activators CDH1 and CDC20. This study provided a basic and comprehensive understanding of characteristic of E2 and E3 genes in Gp. lemaneiformis and set a foundation for further understanding of E2 ubiquitin conjugating enzymes and E3 ubiquitin ligase in regulating tetrasporophytes development of Gp. lemaneiformis.


Assuntos
Rodófitas , Enzimas de Conjugação de Ubiquitina , Animais , Filogenia , Enzimas de Conjugação de Ubiquitina/genética , Genes cdc , Proteínas de Ciclo Celular , Rodófitas/genética , Ubiquitinas
2.
Front Plant Sci ; 14: 1225675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822336

RESUMO

Macropinocytosis is an endocytic process that plays an important role in animal development and disease occurrence but until now has been rarely reported in organisms with cell walls. We investigated the properties of endocytosis in a red alga, Gracilariopsis lemaneiformis. The cells non-selectively internalized extracellular fluid into large-scale endocytic vesicles (1.94 ± 0.51 µm), and this process could be inhibited by 5-(N-ethyl-N-isopropyl) amiloride, an macropinocytosis inhibitor. Moreover, endocytosis was driven by F-actin, which promotes formation of ruffles and cups from the cell surface and facilitates formation of endocytotic vesicles. After vesicle formation, endocytic vesicles could be acidified and acquire digestive function. These results indicated macropinocytosis in G. lemaneiformis. Abundant phosphatidylinositol kinase and small GTPase encoding genes were found in the genome of this alga, while PI3K, Ras, and Rab5, the important participators of traditional macropinocytosis, seem to be lacked. Such findings provide a new insight into endocytosis in organisms with cell walls and facilitate further research into the core regulatory mechanisms and evolution of macropinocytosis.

3.
Mar Biotechnol (NY) ; 24(6): 1073-1083, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36198873

RESUMO

Gracilariopsis lemaneiformis (Gp. lemaneiformis) is an economically important alga. At present, there is no way to quickly and easily determine its ploidy and life cycle dynamics in wild populations, which affects the process of genetic breeding. In this study, we developed and verified a ploidy identification method using flow cytometry and then used it to explore the seasonal fluctuation of the ploidy ratio and the environmental factors that influence it in wild populations of this species. Of the three methods we tested for nucleus extraction, quick chopping was the best because of its high extraction efficiency, low debris background, obvious subcellular scatter plot, and clear typical histogram. Samples from the tip of the alga were more suitable for preparing the nuclear suspension than samples from the base. Generalized linear model analysis based on diagnosis of multicollinearity revealed a negative correlation between temperature and ploidy ratio. Among the environmental factors tested, temperature had the greatest influence on the ploidy ratio, whereas precipitation and sunshine duration had no effect on the ploidy ratio fluctuation. Our study will be useful for material collection and studies of utilization and life cycle dynamics. Moreover, understanding of ploidy dynamics may provide a theoretical basis for improving variety and breeding of Gp. lemaneiformis in the future.


Assuntos
Rodófitas , Estações do Ano , Citometria de Fluxo , Rodófitas/genética , Temperatura , Ploidias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA