Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 159(2): 306-17, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25303527

RESUMO

Induction of beige cells causes the browning of white fat and improves energy metabolism. However, the central mechanism that controls adipose tissue browning and its physiological relevance are largely unknown. Here, we demonstrate that fasting and chemical-genetic activation of orexigenic AgRP neurons in the hypothalamus suppress the browning of white fat. O-linked ß-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins regulates fundamental cellular processes. The levels of O-GlcNAc transferase (OGT) and O-GlcNAc modification are enriched in AgRP neurons and are elevated by fasting. Genetic ablation of OGT in AgRP neurons inhibits neuronal excitability through the voltage-dependent potassium channel, promotes white adipose tissue browning, and protects mice against diet-induced obesity and insulin resistance. These data reveal adipose tissue browning as a highly dynamic physiological process under central control, in which O-GlcNAc signaling in AgRP neurons is essential for suppressing thermogenesis to conserve energy in response to fasting.


Assuntos
Tecido Adiposo Marrom/metabolismo , Dieta , N-Acetilglucosaminiltransferases/metabolismo , Neurônios/metabolismo , Tecido Adiposo Branco/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Jejum , Feminino , Grelina/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , Obesidade/metabolismo , Obesidade/prevenção & controle
2.
Angew Chem Int Ed Engl ; 61(39): e202207252, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35819244

RESUMO

Rather than just focusing on the catalyst itself in the electrocatalytic CO2 reduction reaction (eCO2 RR), as previously reviewed elsewhere, we herein extend the discussion to the special topic of the microenvironment around the electrocatalytic center and present a comprehensive overview of recent research progress. We categorize the microenvironment based on the components relevant to electrocatalytic active sites, i.e., the catalyst surface, substrate, co-reactants, electrolyte, membrane, and reactor. Supported by most of the reported articles, the relevant factors affecting the catalytic performance of eCO2 RR are then discussed in detail, and existing challenges and potential solutions are mentioned. Perspectives for the future research on eCO2 RR, including the integration of different microenvironment factors, the extension to industrial application by coupling with carbon capture and conversion, and separation of products, are also discussed.

3.
Phys Chem Chem Phys ; 21(9): 5142-5147, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30768113

RESUMO

First-principles studies of the crystal structures, electronic structures and optical properties of noncentrosymmetrical (NCS) K3AsS4, Li3AsS3, Pb9As4S15 and Ag3AsS3 have been performed by means of density functional theory. Via a theoretical method to compute the intensity of the lone pair stereochemical activity of an As-S group, the correlated mechanism among the crystal structures, the stereo-chemical activity of lone pairs on As and the second harmonic generation (SHG) response has been clarified. The results prove that the SHG response is not only attributed to the lone pair stereochemical activity of the As-S group but also related to the direction of the forming layers in the crystal structure arrangement. Besides, the quantitative method for the stereo-chemical activity of lone pairs is universal, which is valid for other lone pair systems like those containing Pb2+, Bi3+, Sn2+, etc. The findings facilitate the exploration of materials that may exhibit a relatively large second order NLO reaction and can be used in infrared applications.

4.
Food Chem X ; 22: 101502, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38872720

RESUMO

To determine the effect of cofermentation of Saccharomyces cerevisiae and different LABs on prune wine quality, this study compared phenolic compounds, organic acids, soluble sugars, biogenic amines and volatile flavor compounds among different treatments. The results showed that inoculation of LAB increased DPPH and total flavonoid content. Malic acid content was reduced in HS, HB and HF. Histamine content in S, F and B was lower than the limits in French and Australian wines. 15 phenolic compounds were identified. Yangmeilin and chlorogenic acid were detected only in HS, HF and HB. 51 volatile flavor compounds were identified, esters being the most diverse and abundant. 14 volatile flavor compounds with OAV > 1 contributed highly to the aroma of prune wine. 9 chemical markers including resveratrol, rutin, and catechin were screened to explain intergroup differences by OPLS-DA. This study provides new insights into the processing and quality analysis of prunes.

5.
Food Chem ; 452: 139616, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759436

RESUMO

To investigate the effects of inoculating with three strains of lactic acid bacteria on prune wine quality during malolactic fermentation, this study determined its antioxidant activity, phenolic compounds, organic acids, and volatile/non-volatile metabolites. The results showed that inoculation with Lactobacillus paracasei SMN-LBK improved the antioxidant activity and phenolic compounds of prune wine. 73 VOCs were detected in prune wine by HS-SPME-GC-MS, and VOC content increased by 4.3% and 9.1% in MLFS and MLFB, respectively. Lactobacillus delbrueckii subsp. Bulgaricus showed better potential for winemaking, and citral and 5-nonanol, were detected in the MLF samples. 39 shared differential metabolites were screened and their metabolic pathways were investigated based on nontargeted metabolomics. Differences in amino acid and flavonoid content between strains reflected their specificity in flavonoid biosynthesis and amino acid biosynthesis. These findings will provide useful information for the biochemical study and processing of prune wine.


Assuntos
Fermentação , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Vinho/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Fenóis/metabolismo , Fenóis/química , Fenóis/análise , Antioxidantes/metabolismo , Antioxidantes/química , Lactobacillales/metabolismo
6.
Adv Mater ; : e2312566, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630368

RESUMO

Transition metal oxides (TMOs) are widely studied for loading of various catalysts due to their low cost and high structure flexibility. However, the prevailing close-packed nature of most TMOs crystals has restricted the available loading sites to surface only, while their internal bulk lattice remains unactuated due to the inaccessible narrow space that blocks out most key reactants and/or particulate catalysts. Herein, using tunnel-structured MnO2, this study demonstrates how TMO's internal lattice space can be activated as extra loading sites for atomic Ag in addition to the conventional surface-only loading, via which a dual-form Ag catalyst within MnO2 skeleton is established. In this design, not only faceted Ag nanoparticles are confined onto MnO2 surface by coherent lattice-sharing, Ag atomic strings are also seeded deep into the sub-nanoscale MnO2 tunnel lattice, enriching the catalytically active sites. Tested for electrochemical CO2 reduction reaction (eCO2RR), such dual-form catalyst exhibits a high Faradaic efficiency (94%), yield (67.3 mol g-1 h-1) and durability (≈48 h) for CO production, exceeding commercial Ag nanoparticles and most Ag-based electrocatalysts. Theoretical calculations further reveal the concurrent effect of such dual-form catalyst featuring facet-dependent eCO2RR for Ag nanoparticles and lattice-confined eCO2RR for Ag atomic strings, inspiring the future design of catalyst-substrate configuration.

7.
J Colloid Interface Sci ; 652(Pt A): 529-539, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37607415

RESUMO

Achieving practical applications of PEO-based composite solid electrolyte (CPE) batteries requires the precise design of filler structures at the molecular level to form stable composite interfacial phases, which in turn improve the conductivity of Li+ and inhibit the nucleation growth of lithium dendrites. Some functional fillers suffer from severe agglomeration due to poor compatibility with the polymer base or grain boundary migration, resulting in limited improvement in cell performance. In this paper, ILs@KAP1 is reported as a filler to enhance the performance of PEO-based batteries. Thereinto, the hypercrosslinked phosphorus ligand polymer-containing KAP1, designed at the molecular level, has an abundant porous structure, hydrogen bonding network, and a rigid skeleton structure of benzene rings. These can be used both to improve the flammability with PEO-based and to reduce the crystallinity of the polymer electrolyte. Ionic liquids (ILs) are encapsulated in the nanochannels of KAP1, and thus a 3D Li+ conducting framework could be formed. In this case, it could not only facilitate the wettability of the contact interface with the electrode, significantly promoting its compatibility and providing a fast Li+ transport path, but also facilitate the formation of LiF, Li3N and Li2O rich SEI components, further fostering the uniform deposition/exfoliation of lithium. The LFP||CPE||Li battery assembled with ILs@KAP1-PEO-CPE has a high initial discharge specific capacity about 156 mAh/g at 1C and a remaining capacity about 121.8 mAh/g after 300 cycles (capacity retention of 78.07%).

8.
Eng Life Sci ; 23(2): e2200034, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36751472

RESUMO

Clustering enzymes in the same metabolic pathway is a natural strategy to enhance productivity. Synthetic protein, RNA and DNA scaffolds have been designed to artificially cluster multiple enzymes in the cell, which require complex construction processes and possess limited slots for target enzymes. We utilized the Escherichia coli inner cell membrane as a native scaffold to cluster four fatty acid synthases (FAS) and achieved to improve the efficiency of fatty acid synthesis in vivo. The construction strategy is as simple as fusing target enzymes to the N-terminus or C-terminus of the membrane anchor protein (Lgt), and the number of anchored enzymes is not restricted. This novel device not only presents a similar efficiency in clustering multiple enzymes to that of other artificial scaffolds but also promotes the product secretion, driving the entire metabolic flux forward and further increasing the gross yield compared with that in a cytoplasmic scaffold system.

9.
Materials (Basel) ; 15(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35629471

RESUMO

New Functional Organic Materials and Their Photoelectric Applications is a new open Special Issue of Materials, which focuses on designing and fabricating advanced functional organic optoelectronic materials and makes great contributions to investigating their properties, related applications, and underlying mechanisms [...].

10.
RSC Adv ; 9(8): 4539-4544, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35520164

RESUMO

Exploration of the versatility of materials is very important for increasing the utilization of materials. Herein, we successfully prepared Bi4O5I2 powders via a facile solvothermal method. The Bi4O5I2 photocatalyst exhibited significantly higher photocatalytic activity as compared to the common BiOI photocatalyst in the degradation of methyl orange, methylene blue and rhodamine B under visible light irradiation. Especially, for the degradation of methyl orange, the photocatalytic activity of Bi4O5I2 is about 10 times that of BiOI. Moreover, Bi4O5I2 exhibits an extremely high second harmonic generation response of about 20 × KDP (the benchmark) estimated by the unbiased ab initio calculations. The coexisting multifunction of Bi4O5I2 is mainly because of the increased dipole moment due to the stereochemical activity of lone pairs that promotes separation and transfer of photogenerated carriers, then enhances the photocatalytic activity and results in a high second harmonic generation response. This indicates that Bi4O5I2 may have good potential applications in photocatalytic and nonlinear optical fields.

11.
JCI Insight ; 4(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672932

RESUMO

Worldwide, over a billion people suffer from chronic liver diseases, which often lead to fibrosis and then cirrhosis. Treatments for fibrosis remain experimental, in part because no unifying mechanism has been identified that initiates liver fibrosis. Necroptosis has been implicated in multiple liver diseases. Here, we report that O-linked ß-N-acetylglucosamine (O-GlcNAc) modification protects against hepatocyte necroptosis and initiation of liver fibrosis. Decreased O-GlcNAc levels were seen in patients with alcoholic liver cirrhosis and in mice with ethanol-induced liver injury. Liver-specific O-GlcNAc transferase-KO (OGT-LKO) mice exhibited hepatomegaly and ballooning degeneration at an early age and progressed to liver fibrosis and portal inflammation by 10 weeks of age. OGT-deficient hepatocytes underwent excessive necroptosis and exhibited elevated protein expression levels of receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), which are key mediators of necroptosis. Furthermore, glycosylation of RIPK3 by OGT is associated with reduced RIPK3 protein stability. Taken together, these findings identify OGT as a key suppressor of hepatocyte necroptosis, and OGT-LKO mice may serve as an effective spontaneous genetic model of liver fibrosis.


Assuntos
Cirrose Hepática/prevenção & controle , N-Acetilglucosaminiltransferases/metabolismo , Necroptose , Animais , Feminino , Humanos , Cirrose Hepática/enzimologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética
12.
Nat Commun ; 9(1): 5103, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504766

RESUMO

Palatable foods (fat and sweet) induce hyperphagia, and facilitate the development of obesity. Whether and how overnutrition increases appetite through the adipose-to-brain axis is unclear. O-linked beta-D-N-acetylglucosamine (O-GlcNAc) transferase (OGT) couples nutrient cues to O-GlcNAcylation of intracellular proteins at serine/threonine residues. Chronic dysregulation of O-GlcNAc signaling contributes to metabolic diseases. Here we show that adipocyte OGT is essential for high fat diet-induced hyperphagia, but is dispensable for baseline food intake. Adipocyte OGT stimulates hyperphagia by transcriptional activation of de novo lipid desaturation and accumulation of N-arachidonyl ethanolamine (AEA), an endogenous appetite-inducing cannabinoid (CB). Pharmacological manipulation of peripheral CB1 signaling regulates hyperphagia in an adipocyte OGT-dependent manner. These findings define adipocyte OGT as a fat sensor that regulates peripheral lipid signals, and uncover an unexpected adipose-to-brain axis to induce hyperphagia and obesity.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Hiperfagia/metabolismo , Hiperfagia/patologia , Obesidade/metabolismo , Obesidade/patologia , Acetilglucosamina/metabolismo , Tecido Adiposo/patologia , Animais , Western Blotting , Peso Corporal/genética , Peso Corporal/fisiologia , Canabinoides/metabolismo , Linhagem Celular , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
13.
Artigo em Inglês | MEDLINE | ID: mdl-25566193

RESUMO

The liver is a vital organ responsible for maintaining nutrient homeostasis. After a meal, insulin stimulates glycogen and lipid synthesis in the liver; in the fasted state, glucagon induces gluconeogenesis and ketogenesis, which produce glucose and ketone bodies for other tissues to use as energy sources. These metabolic changes involve spatiotemporally co-ordinated signaling cascades. O-linked ß-N-acetylglucosamine (O-GlcNAc) modification has been recognized as a nutrient sensor and regulatory molecular switch. This review highlights mechanistic insights into spatiotemporal regulation of liver metabolism by O-GlcNAc modification and discusses its pathophysiological implications in insulin resistance, non-alcoholic fatty liver disease, and fibrosis.

14.
Cell Rep ; 7(4): 999-1008, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24813888

RESUMO

Patients with EGFR-mutant lung adenocarcinomas (LUADs) who initially respond to first-generation tyrosine kinase inhibitors (TKIs) develop resistance to these drugs. A combination of the irreversible TKI afatinib and the EGFR antibody cetuximab can be used to overcome resistance to first-generation TKIs; however, resistance to this drug combination eventually emerges. We identified activation of the mTORC1 signaling pathway as a mechanism of resistance to dual inhibition of EGFR in mouse models. The addition of rapamycin reversed resistance in vivo. Analysis of afatinib-plus-cetuximab-resistant biopsy specimens revealed the presence of genomic alterations in genes that modulate mTORC1 signaling, including NF2 and TSC1. These findings pinpoint enhanced mTORC1 activation as a mechanism of resistance to afatinib plus cetuximab and identify genomic mechanisms that lead to activation of this pathway, revealing a potential therapeutic strategy for treating patients with resistance to these drugs.


Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adenocarcinoma/enzimologia , Adenocarcinoma de Pulmão , Afatinib , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Linhagem Celular Tumoral , Cetuximab , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Nus , Camundongos Transgênicos , Mutação , Quinazolinas/administração & dosagem , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA