RESUMO
Quantitative trait locus (QTL) analyses of multiomic molecular traits, such as gene transcription (eQTL), DNA methylation (mQTL) and histone modification (haQTL), have been widely used to infer the functional effects of genome variants. However, the QTL discovery is largely restricted by the limited study sample size, which demands higher threshold of minor allele frequency and then causes heavy missing molecular trait-variant associations. This happens prominently in single-cell level molecular QTL studies because of sample availability and cost. It is urgent to propose a method to solve this problem in order to enhance discoveries of current molecular QTL studies with small sample size. In this study, we presented an efficient computational framework called xQTLImp to impute missing molecular QTL associations. In the local-region imputation, xQTLImp uses multivariate Gaussian model to impute the missing associations by leveraging known association statistics of variants and the linkage disequilibrium (LD) around. In the genome-wide imputation, novel procedures are implemented to improve efficiency, including dynamically constructing a reused LD buffer, adopting multiple heuristic strategies and parallel computing. Experiments on various multiomic bulk and single-cell sequencing-based QTL datasets have demonstrated high imputation accuracy and novel QTL discovery ability of xQTLImp. Finally, a C++ software package is freely available at https://github.com/stormlovetao/QTLIMP.
Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla/métodos , Genótipo , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Tamanho da AmostraRESUMO
Coverage and connectivity are two of the most critical research subjects in WSNs, while regular deterministic deployment is an important deployment strategy and results in some pattern-based lattice WSNs. Some studies of optimal regular deployment for generic values of rc/rs were shown recently. However, most of these deployments are subject to a disk sensing model, and cannot take advantage of data fusion. Meanwhile some other studies adapt detection techniques and data fusion to sensing coverage to enhance the deployment scheme. In this paper, we provide some results on optimal regular deployment patterns to achieve information coverage and connectivity as a variety of rc/rs, which are all based on data fusion by sensor collaboration, and propose a novel data fusion strategy for deployment patterns. At first the relation between variety of rc/rs and density of sensors needed to achieve information coverage and connectivity is derived in closed form for regular pattern-based lattice WSNs. Then a dual triangular pattern deployment based on our novel data fusion strategy is proposed, which can utilize collaborative data fusion more efficiently. The strip-based deployment is also extended to a new pattern to achieve information coverage and connectivity, and its characteristics are deduced in closed form. Some discussions and simulations are given to show the efficiency of all deployment patterns, including previous patterns and the proposed patterns, to help developers make more impactful WSN deployment decisions.