Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(19): 8782-8790, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38691448

RESUMO

Potocatalytic hydrogen evolution represnets a promising way to achieve renewable energy sources. Dual heterojunctions with an inverse opal structure are proposed for addressing fundamental challenges (low surface area, inefficient light absorption, and poor charge separation) in photocatalytic water splitting. Inverse opal structure and Co3O4 were introduced to design and synthesize a ZnO/ZnS/Co3O4 (IO-ZnO/ZnS/Co3O4) photocatalyst. Morphology characterizations and photoelectric measurements reveal that the introduction of three-dimensional (3D) structures and dual heterojunctions improves light utilization efficiency and accelerates charge separation, greatly promoting photoelectric performance. The as-prepared IO-ZnO/ZnS/Co3O4 manifests superior photocurrent density (0.49 mA/cm2), which is 4 times higher than that of IO-ZnO/ZnS due to the existence of dual heterojunctions. The result is further confirmed by an enhanced H2 production rate (153.01 µmol/g/h) in pure water. Notably, excellent cycling stability is achieved in pure water because Co3O4 can rapidly capture photogenerated holes to inhibit severe photocorrosion of ZnO/ZnS. Therefore, this work presents a new insight into inhibiting photocorrosion of metal sulfides and promoting their photoelectric performance by combining 3D structures and dual heterojunctions.

2.
Inorg Chem ; 63(25): 11852-11859, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856980

RESUMO

The efficiency of electrochemical nitrate (NO3-) reduction to ammonia (NH3) still remains a challenge due to the sluggish kinetics of the complex eight-electron reduction process and competitive hydrogen evolution reaction (HER). Herein, we designed new three-dimensional (3D) porous Cu/Cu2+1O nanosheet arrays (Cu/Cu2+1O NSA) by coupling a template-directed method with in situ electroreduction. Thanks to the 3D porous structure and in-plane heterojunctions, Cu/Cu2+1O NSA can provide abundant active sites and a good interfacial effect, obtaining the maximum Faradaic efficiency (FE) of ammonia (88.09%) and high yield rate of 0.2634 mmol h-1 cm-2, which is higher than that of CuO nanosheets (77.81% and 0.2188 mmol h-1 cm-2) and CuO nanoparticles (34.60% and 0.0692 mmol h-1 cm-2). Experimental results and DFT simulations show that the interface effect of Cu/Cu2+1O can decrease the reaction energy barrier of the key step (*NO to *NOH) and can greatly inhibit the competitive hydrogen evolution reaction, thereby achieving excellent electrocatalytic performance for nitrate-to-ammonia conversion.

3.
Nanotechnology ; 31(27): 275401, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32163942

RESUMO

Although TiO2 is widely used as a promising electrode material for supercapacitors, its potential application suffers from a critical limitation due to its poor electrical conductivity and low rate capability. Here, we report a cost-effective hydrothermal strategy to design and construct a novel 'single-crystal-like' C-doped TiO2 electrode material. The as-synthesized electrode material combines the advantages of TiO2, 'single-crystal-like' features and carbon doping, considerably improving the electrical conductivity of TiO2. The electrochemical measurements demonstrate that the C-doped TiO2 material presents an excellent specific capacitance (449.8 F g-1 at 1 A g-1), which approaches six times more than the value (77.3 F g-1 at 1 A g-1) of P25 electrodes, and far beyond the value of many previously reported TiO2 electrodes. Therefore, this work explores a new method to design high performance electrochemical TiO2 electrode materials by incorporating other dopants into the TiO2 lattice.

4.
Front Physiol ; 12: 790182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955896

RESUMO

Background: Intestinal damage caused by intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) can lead to the ectopic gut microbiota, which can contribute to liver injury via portal veins. Therefore, it is speculated that gut microbiota disorder caused by IAH/ACS may result in liver injury. The relationship between gut microbiota and IAH/ACS-related liver injury was investigated in this study. Methods: A model of IAH was established in rats, and 16S rRNA sequencing was analyzed for gut microbiota in the feces of rats. The elimination of gut microbiota was completed by antibiotics gavage, and fecal microbiota transplantation (FMT) was used to change the composition of gut microbiota in rats. Results: In addition to the traditional cause of liver blood vessel compression, liver injury caused by IAH was also associated with gut microbiota dysbiosis. Gut microbiota clearance can relieve liver injury caused by IAH, while FMT from IAH-intervened rats can aggravate IAH-related liver injury. Conclusion: The gut microbiota was one of the most important factors contributing to the IAH-related liver injury, and the JNK/p38 signaling pathway was activated in this process.

5.
ACS Appl Mater Interfaces ; 12(38): 42739-42748, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32864954

RESUMO

The search for catalysts with a perfect substrate selectivity toward the hydrogenation of nitroarenes is a goal of high importance, which still remains a significant challenge. Here, we designed a new type of catalyst with superior substrate selectivity by combining a space-confined effect and a hydrogen-bonding network, in which metal nanoparticles (MNPs) were confined in hierarchical hollow silica (HHS) with a poly(N-isopropylacrylamide) (PNIPA) coating. Given the strong induced properties of hydrogen-bond donors and acceptors in the HHS support and PNIPA coating, the as-synthesized catalyst would achieve perfect substrate selectivity for the hydrogenation of various nitroarenes and their mixture by thoroughly impeding the reduction of nitroarenes with any hydroxyl or carboxyl groups, which is typically very difficult to be realized over almost all of the reported supported-metal catalysts. Notably, the hydrogenation of nitroarenes can produce almost quantitative yields of anilines over the as-synthesized catalyst. Furthermore, density functional theory and experimental evidence are also provided for the hierarchical structure of HHS and PNIPA coating associated with substrates to demonstrate how a substrate could have access or be blocked into the confined active centers (MNPs). Therefore, this work would open a new window to design efficient catalysts for a wide variety of substrate-selective catalyses.

6.
ACS Appl Mater Interfaces ; 9(35): 29982-29991, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28777532

RESUMO

TiO2 has been widely investigated as an electrode material because of its long cycle life and good durability, but the relatively low theoretical capacity restricts its practical application. Herein, we design and synthesize novel hierarchical SiO2@C/TiO2 (HSCT) hollow spheres via a template-directed method. These unique HSCT hollow spheres combine advantages from both TiO2 such as cycle stability and SiO2 with a high accessible area and ionic transport. In particular, the existence of a C layer is able to enhance the electrical conductivity. The SiO2 layer with a porous structure can increase the ion diffusion channels and accelerate the ion transfer from the outer to the inner layers. The electrochemical measurements demonstrate that the HSCT-hollow-sphere-based electrode manifests a high specific capacitance of 1018 F g-1 at 1 A g-1 which is higher than those for hollow TiO2 (113 F g-1) and SiO2/TiO2 (252 F g-1) electrodes, and substantially higher than those of all the previously reported TiO2-based electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA