Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Small ; 20(15): e2307484, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38050936

RESUMO

Green synthesis of stable metal-organic frameworks (MOFs) with permanent and highly ordered porosity at room temperature without needing toxic and harmful solvents and long-term high-temperature reactions is crucial for sustainable production. Herein, a rapid and environmentally friendly synthesis strategy is reported to synthesize the complex topological bismuth-based-MOFs (Bi-MOFs), [Bi9(C9H3O6)9(H2O)9] (denoted CAU-17), in water under ambient conditions by surfactant-mediated sonochemical approach, which could also be applicable to other MOFs. This strategy explores using cetyltrimethylammonium bromide (CTAB) amphiphilic molecules as structure-inducing agents to control the removal of non-coordinated water (dehydration) and enhance the degree of deprotonation of the ligands, thereby regulating the coordination and crystallization in aqueous solutions. In addition, another two new strategies for synthesizing CAU-17 by crystal reconstruction and one-step synthesis in binary solvents are provided, and the solvent-induced synthesis mechanism of CAU-17 is studied. The as-prepared CAU-17 presents a competitive iodine capture capability and effective delivery of the antiarrhythmic drug procainamide (PA) for enteropatia due to the broad pH tolerance and the unique phosphate-responsive destruction in the intestine. The findings will provide valuable ideas for the follow-up study of surfactant-assisted aqueous synthesis of MOFs and their potential applications.

2.
Small ; 20(2): e2305189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37667455

RESUMO

Traditional metal-organic frameworks (MOFs) based micro/nanomotors (MOFtors) can achieve three-dimensional (3D) motion mainly depending on noble metal (e.g., Pt), toxic fuels (e.g., hydrogen peroxide), and surfactants, or under external magnetic fields. In this study, light-driven MOFtors are constructed based on PCN-224(H) and regulated their photothermal and photochemical properties responding to the light of different wavelengths through porphyrin metalation. The resulting PCN-224(Fe) MOFtors presented a strong 3D motion at a maximum speed of 1234.9 ± 367.5 µm s-1 under visible light due to the various gradient fields by the photothermal and photochemical effects. Such MOFtors exhibit excellent water sterilization performance. Under optimal conditions, the PCN-224(Cu) MOFtors presented the best antibacterial performance of 99.4%, which improved by 23.4% compared to its static counterpart and 43.7% compared to static PCN-224(H). The underlying mechanism demonstrates that metal doping could increase the production of reactive oxygen species (ROS) and result in a more positive surface charge under light, which are short-distance effective sterilizing ingredients. Furthermore, the motion of MOFtors appears very important to extend the short-distance effective sterilization and thus synergistically improve the antibacterial performance. This work provides a new idea for preparing and developing light-driven MOFtors with multi-responsive properties.

3.
Langmuir ; 39(32): 11166-11187, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37533296

RESUMO

Proton exchange membranes (PEMs), especially for work under intermediate temperatures (100-200 °C), have attracted great interest because of the high CO toleration and facial water management of the corresponding proton exchange membrane fuel cells (PEMFCs). Traditional polymer PEMs faced challenges of low stability and proton carrier leaking. Crystalline porous materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are promising to overcome these issues contributed by nanometer-sized channels. Herein we summarized the recent development of MOF/COF-based intermediate-temperature proton conductors. The strategies of framework engineering and pore impregnation were introduced in detail for raising proton conductivity. The proton-conducting mechanism was described as well. This spotlight will provide new insight into the fabrication of MOF/COF proton conductors under intermediate-temperature and anhydrous conditions.

4.
Angew Chem Int Ed Engl ; 61(46): e202211163, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36121046

RESUMO

The design of MOF-based micromotors (MOFtors) is still challenging and with limited approaches, especially for the MOF nanoparticles (NPs). Herein, we report a universal and straightforward strategy to efficiently self-assembly MOF NPs into robust MOFtors for enhanced organic- or heavy-metal-ion-contaminants remediation without mechanical stirring. Based on the transient Pickering emulsion method, Fe3 O4 @NH2 -UiO-66 (Fe-UiO) NPs are rapidly self-assembled into Fe3 O4 @NH2 -UiO-66 colloidosomes (Fe-UiOSomes) on a large scale, and the formation mechanism is systematically studied. The Fe-UiOSomes-Pt micromotors through chemical reduction (Micromotor-C) presented a higher motility of 450±180 µm s-1 in a 5 wt% H2 O2 aqueous solution. Finally, the bubble-propelled Micromotor-C was employed to efficiently remove dyes and heavy metal ions (94 % for MO and 91 % for CrVI ).

5.
Small ; 17(23): e2100294, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33945209

RESUMO

Micro/nanomotors are capable of a wide variety of tasks related, i.e., to biomedical or environmental applications. Light-driven semiconductor-based micromotors are especially appealing, as they can split surrounding water via light irradiation, and therefore, they can move infinitely. However, their motion is typically limited to in-plane motion with four degrees of freedom (4DoF) or even pseudo-1D motion with 2DoF. Herein, magnetically steerable tubular TiO2 /Fe3 O4 /CdS micromotors, termed microsubmarines, with 6DoF motion, based on a fuel-free design where surrounding water acts as fuel upon visible light irradiation, are presented, with an average velocity of 7.9 µm s-1 . Besides, the generation of radicals via such water splitting aids the photocatalytic chemicals degradation with the potential to use solar radiation. A light-induced self-electrophoretic mechanism is responsible for the self-propulsion and can be used to predict the motion direction based on the structure and composition. Finally, the TiO2 /Fe3 O4 /CdS microsubmarines are tested in a proof-of-concept application of high-energy explosive, e.g., picric acid, photocatalytic degradation, with the best performance owing to the versatility of 6DoF motion, the surface coating with amorphous TiO2 layer, and UV light. The results can help optimize light-active micromotor design for potential national security and environmental application, hydrogen evolution, and target cargo delivery.


Assuntos
Substâncias Explosivas , Água , Descontaminação , Hidrogênio , Luz
6.
Small ; 16(29): e2002037, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32519439

RESUMO

Ultrathin bismuth exhibits promising performance for topological insulators due to its narrow band gap and intrinsic strong spin-orbit coupling, as well as for energy-related applications because of its electronic and mechanical properties. However, large-scale production of 2D sheets via liquid-phase exfoliation as an established large-scale method is restricted by the strong interaction between bismuth layers. Here, a sonication method is utilized to produce ultrahigh-aspect-ratio bismuthene microsheets. The studies on the mechanism excludes the exfoliation of the layered bulk bismuth and formation of the microsheets is attributed to the melting of spherical particles (r = 1.5 µm) at a high temperature-generated under the ultrasonic tip-followed by a recrystallization step producing uniformly-shaped ultrathin microsheets (A = 0.5-2 µm2 , t: ≈2 nm). Notably, although the preparation is performed in oxygenated aqueous solution, the sheets are not oxidized, and they are stable under ambient conditions for at least 1 month. The microsheets are used to construct a vapor sensor using electrochemical impedance spectroscopy as detection technique. The device is highly selective, and it shows long-term stability. Overall, this project exhibits a reproducible method for large-scale preparation of ultrathin bismuthene microsheets in a benign environment, demonstrating opportunities to realize devices based on bismuthene.

7.
Small ; 16(27): e1902944, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31464380

RESUMO

Self-propelled micromachines have recently attracted lots of attention for environmental remediation. Developing a large-scale but template-free fabrication of self-propelled rod/tubular micro/nanomotors is very crucial but still challenging. Here, a new strategy based on vertically aligned ZnO arrays is employed for the large-scale and template-free fabrication of self-propelled ZnO-based micromotors with H2 O2 -free light-driven propulsion ability. Brush-shaped ZnO-based micromotors with different diameters and lengths are fully studied, which present a fast response to multicycles UV light on/off switches with different interval times (2/5 s) in pure water and slow directional motion in aqueous hydrogen peroxide solution in the absence of UV light. Light-induced electrophoretic and self-diffusiophoretic effects are responsible for these two different self-motion behaviors under different conditions, respectively. In addition, the pH of the media and the presence of H2 O2 show important effects on the motion behavior and microstructure of the ZnO-based micromotors. Finally, these novel ZnO-based brush-shaped micromotors are demonstrated in a proof-of-concept study on nitroaromatic explosive degradation, i.e., picric acid. This work opens a completely new avenue for the template-free fabrication of brush-shaped light-responsive micromotors on a large scale based on vertically aligned ZnO arrays.

8.
Chemistry ; 26(14): 3039-3043, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31943446

RESUMO

Yeasts play a key role in the production of alcoholic beverages by fermentation processes. However, because of their continuous growth, they commonly cause spoilage of the final product. Herein, we introduce dual magnetic/light-responsive self-propelled microrobots that can actively move in a beer sample and capture yeast cells. The presence of magnetic nanoparticles on the surface of the microrobots enables their magnetic actuation under fuel-free conditions. In addition, their photoactivity under visible-light irradiation leads to an overall enhancement of their swimming and yeast removal capabilities. It was found that after the application of the microrobots into a real unfiltered beer sample, these micromachines were able to remove almost 100 % of residual yeasts. In addition, these microrobots could also be added at the initial step of the fermentation process without altering the final beer properties, such as alcohol level, color, and pH. This work demonstrates the potential of using externally actuated microrobots as an innovative and low-cost solution for avoiding yeast spoilage in complex liquid environments, such as alcoholic beverages. Therefore, these autonomous self-propelled microrobots open new avenues for future applications in the food industry.


Assuntos
Antibacterianos/química , Cerveja/microbiologia , Bismuto/química , Fermentação , Contaminação de Alimentos/prevenção & controle , Nanopartículas de Magnetita/química , Saccharomyces cerevisiae/metabolismo , Vanadatos/química , Peróxido de Hidrogênio/química , Luz , Campos Magnéticos , Microesferas , Processos Fotoquímicos
9.
Chemistry ; 25(1): 106-121, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30306655

RESUMO

Self-propelled micro/nanomotors are synthetic machines that can convert different sources of energy into motion; at the same time, they are able to serve innovative environmental applications, for example, water purification. The self-propelled micro and nanomachines can rapidly zoom through the solution, carrying catalytic surface or chemical to remove or degrade pollutants in a much faster fashion than that of static systems, which depend on diffusion and fluxes. This review highlights the recent progress of micro/nanomotors in water pollutant detection and pollutant removal applications.

10.
Nanotechnology ; 29(15): 155602, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29406311

RESUMO

A graphene oxide (GO) membrane is promising for molecule separation. However, it is still a big challenge to achieve highly stable pristine GO membranes, especially in water. In this work, an ultrathin and robust GO membrane is assembled via the cross-flow method. The as-prepared 12 nm thick GO membrane (GOCF membrane) presents high stability with water permeance of 1505 ± 65 litres per hour per square meter per bar (LHM bar-1) and Evans Blue (EB) rejection of 98.7 ± 0.4%, 21-fold enhancement in water permeance compared with that of a pristine GO membrane (50-70 LHM bar-1) and 100 times higher than that of commercial ultrafiltration membranes (15 LHM.bar-1, GE2540F30, MWCO 1000, GE Co., Ltd) with similar rejection. Attributed to the surface cross-flow, the GO nanosheets will be refolded, crumpled, or wrinkled, resulting in a very strong inter-locking structure among the GO membrane, which significantly enhances the stability and facilitates their separation performance. This cross-flow assembling technique is also easily extended to assemble GO membranes onto other various backing filter supports. Based on the Donnan effect and size sieving mechanism, selective membrane separation of dyes with a similar molecular structure from their mixture (such as Rhodamine B (RhB) and Rose Bengal, and RhB and EB) are achieved with a selectivity of 133 ± 10 and 227 ± 15, respectively. Assembly of this ultrathin GO membrane with high stability and separation performance, via a simple cross-flow method, shows great potential for water purification.

11.
Nanotechnology ; 27(35): 352501, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27458188

RESUMO

Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

12.
Nanotechnology ; 27(24): 245703, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27158875

RESUMO

Graphene modified by graphene quantum dots (GQDs) has been employed to remove toxic organic dyes. An excellent removal capacity (497 mg g(-1)) and record-breaking adsorption rate (475 mg g(-1) min(-1) at 20 °C) were demonstrated for Rhodamine B. The enhancement in performance by nearly a factor of three compared to that of graphene was ascribed to the greatly increased accessible surface area of graphene in aqueous solution as well as the increase in surface charges with the modification with GQDs. Besides, this unique adsorption behavior of the modified graphene was expanded to other typical toxic aqueous aromatic dyes such as Evans Blue, Methyl Orange, Malachite Green and Rose Bengal. What is more, a unique desorption behavior of dyes was first observed when employing different solvents, which enabled the GQD-modified graphene to be exploited for selective extraction of dyes and recycling of the adsorbent. The adsorption and desorption mechanism were further investigated. Combining high removal capacity, rapid adsorption kinetics, good recyclability and unique selective desorption, GQD-modified graphene has potential applications in both water purification and separation of aromatic dyes.

13.
Nanotechnology ; 27(33): 332001, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27388995

RESUMO

Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as well as fully explain up-to-date mechanisms and models of water transport and molecular separation behavior, which will arouse great interest among researchers entering or already working in the field of 2D material-based membranes.

14.
Angew Chem Int Ed Engl ; 55(48): 15120-15124, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27805300

RESUMO

Extraction of lithium ions from salt-lake brines is very important to produce lithium compounds. Herein, we report a new approach to construct polystyrene sulfonate (PSS) threaded HKUST-1 metal-organic framework (MOF) membranes through an in situ confinement conversion process. The resulting membrane PSS@HKUST-1-6.7, with unique anchored three-dimensional sulfonate networks, shows a very high Li+ conductivity of 5.53×10-4  S cm-1 at 25 °C, 1.89×10-3  S cm-1 at 70 °C, and Li+ flux of 6.75 mol m-2 h-1 , which are five orders higher than that of the pristine HKUST-1 membrane. Attributed to the different size sieving effects and the affinity differences of the Li+ , Na+ , K+ , and Mg2+ ions to the sulfonate groups, the PSS@HKUST-1-6.7 membrane exhibits ideal selectivities of 78, 99, and 10296 for Li+ /Na+ , Li+ /K+ , Li+ /Mg2+ and real binary ion selectivities of 35, 67, and 1815, respectively, the highest ever reported among ionic conductors and Li+ extraction membranes.

15.
Chemistry ; 21(43): 15127-32, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26471435

RESUMO

Hierarchical porous materials are promising for catalyst, separation and sorption applications. A ligand-assisted etching process is developed for template-free synthesis of hierarchical mesoporous MOFs as single crystals and well-intergrown membranes at 40 °C. At 223 K, the hierarchical porous structures significantly improve the CO2 capture capacity of HKUST-1 by more than 44 % at pressures up to 20 kPa and 13 % at 100 kPa. Even at 323 K, the enhancement of CO2 uptake is above 25 % at pressures up to 20 kPa and 7 % at 100 kPa. The mesoporous structures not only enhance the CO2 uptake capacity but also improve the diffusion and mass transportation of CO2 . Similarly, well-intergrown mesoporous HKUST-1 membranes are synthesized, which hold the potential for film-like porous devices. Mesoporous MOF-5 crystals are also obtained by a similar ligand-assisted etching process. This may provide a facile way to prepare hierarchical porous MOF single crystals and membranes for wide-ranging applications.

16.
Adv Mater ; 36(1): e2305925, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37801654

RESUMO

In the past decade, micro- and nanomachines (MNMs) have made outstanding achievements in the fields of targeted drug delivery, tumor therapy, microsurgery, biological detection, and environmental monitoring and remediation. Researchers have made significant efforts to accelerate the rapid development of MNMs capable of moving through fluids by means of different energy sources (chemical reactions, ultrasound, light, electricity, magnetism, heat, or their combinations). However, the motion of MNMs is primarily investigated in confined two-dimensional (2D) horizontal setups. Furthermore, three-dimensional (3D) motion control remains challenging, especially for vertical movement and control, significantly limiting its potential applications in cargo transportation, environmental remediation, and biotherapy. Hence, an urgent need is to develop MNMs that can overcome self-gravity and controllably move in 3D spaces. This review delves into the latest progress made in MNMs with 3D motion capabilities under different manipulation approaches, discusses the underlying motion mechanisms, explores potential design concepts inspired by nature for controllable 3D motion in MNMs, and presents the available 3D observation and tracking systems.

17.
Adv Sci (Weinh) ; : e2406381, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206871

RESUMO

Traditional light-driven metal-organic-frameworks (MOFs)-based micromotors (MOFtors) are typically constrained to two-dimensional (2D) motion under ultraviolet or near-infrared light and often demonstrate instability and susceptibility to ions in high-saline environments. This limitation is particularly relevant to employing micromotors in water purification, as real wastewater is frequently coupled with high salinity. In response to these challenges, ultrastable MOFtors capable of three-dimensional (3D) motion under a broad spectrum of light through thermophoresis and electrophoresis are successfully synthesized. The MOFtors integrated photocatalytic porphyrin MOFs (PCN-224) with a photothermal component made of polypyrrole (PPy) by three distinct methodologies, resulting in micromotors with different motion behavior and catalytic performance. Impressively, the optimized MOFtors display exceptional maximum velocity of 1305 ± 327 µm s-1 under blue light and 2357 ± 453 µm s-1 under UV light. In harsh saline environments, these MOFtors are not only maintain high motility but also exhibit superior tetracycline hydrochloride (TCH) removal efficiency of 3578 ± 510 mg g-1, coupling with sulfate radical-based advanced oxidation processes and peroxymonosulfate. This research underscores the significant potential of highly efficient MOFtors with robust photocatalytic activity in effectively removing TCH in challenging saline conditions, representing a substantial advancement in applying MOFtors within real-world water treatment technologies.

18.
Adv Healthc Mater ; 13(23): e2401005, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38663447

RESUMO

In chronic wound management, efficacious handling of exudate and bacterial infections stands as a paramount challenge. Here a novel biomimetic fabric, inspired by the natural transpiration mechanisms in plants, is introduced. Uniquely, the fabric combines a commercial polyethylene terephthalate (PET) fabric with asymmetrically grown 1D rutile titanium dioxide (TiO2) micro/nanostructures, emulating critical plant features: hierarchically porous networks and hydrophilic water conduction channels. This structure endows the fabric with exceptional antigravity wicking-evaporation performance, evidenced by a 780% one-way transport capability and a 0.75 g h-1 water evaporation rate, which significantly surpasses that of conventional moisture-wicking textiles. Moreover, the incorporated 1D rutile TiO2 micro/nanostructures present solar-light induced antibacterial activity, crucial for disrupting and eradicating wound biofilms. The biomimetic transpiration fabric is employed to drain exudate and eradicate biofilms in Staphylococcus aureus (S. aureus)-infected wounds, demonstrating a much faster infection eradication capability compared to clinically common ciprofloxacin irrigation. These findings illuminate the path for developing high-performance, textile-based wound dressings, offering efficient clinical platforms to combat biofilms associated with chronic wounds.


Assuntos
Bandagens , Biofilmes , Staphylococcus aureus , Têxteis , Titânio , Cicatrização , Biofilmes/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Titânio/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Infecções Estafilocócicas/tratamento farmacológico , Polietilenotereftalatos/química , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/terapia , Nanoestruturas/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Humanos
19.
Small Methods ; 8(9): e2301461, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38243881

RESUMO

This research examines vanadium-deficient V2C MXene, a two-dimensional (2D) vanadium carbide with exceptional electrochemical properties for rechargeable zinc-ion batteries. Through a meticulous etching process, a V-deficient, porous architecture with an expansive surface area is achieved, fostering three-dimensional (3D) diffusion channels and boosting zinc ion storage. Analytical techniques like scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller, and X-ray diffraction confirm the formation of V2C MXene and its defective porous structure. X-ray photoelectron spectroscopy further verifies its transformation from the MAX phase to MXene, noting an increase in V3+ and V4+ states with etching. Cyclic voltammetry reveals superior de-zincation kinetics, evidenced by consistent V3+/V4+ oxidation peaks at varied scanning rates. Overall, this V-deficient MXene outperforms raw MXenes in capacity and rate, although its capacity diminishes over extended cycling due to structural flaws. Theoretical analyses suggest conductivity rises with vacancies, enhancing 3D ionic diffusion as vacancy size grows. This work sheds light on enhancing V-based MXene structures for optimized zinc-ion storage.

20.
Small Methods ; 7(8): e2201547, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37075736

RESUMO

Light-driven magnetic MXene-based microrobots (MXeBOTs) have been developed as an active motile platform for efficiently removing and degrading bisphenol A (BPA). Light-driven MXeBOTs are facilitated with the second control engine, i.e., embedded Fe2 O3 nanoparticles (NPs) for magnetic propulsion. The grafted bismuth NPs act as cocatalysts. The effect of the BPA concentration and the chemical composition of the swimming environment on the stability and reusability of the MXeBOTs are studied. The MAXBOTs, a developed motile water remediation platform, demonstrate the ability to remove/degrade approximately 60% of BPA within just 10 min and achieve near-complete removal/degradation (≈100%) within 1 h. Above 86% of BPA is mineralized within 1 h. The photocatalytic degradation of BPA using Bi/Fe/MXeBOTs demonstrates a significant advantage in the mineralization of BPA to CO2 and H2 O.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA