Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Allergy Clin Immunol ; 153(6): 1736-1742, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38395084

RESUMO

BACKGROUND: Inborn errors of immunity offer important insights into mucosal immunity. In autoimmune polyendocrine syndrome type-1 (APS-1), chronic mucocutaneous candidiasis has been ascribed to neutralizing IL-17 autoantibodies. Recent evidence implicates excessive T-cell IFN-γ secretion and ensuing epithelial barrier disruption in predisposition to candidiasis, but these results remain to be replicated. Whether IL-17 paucity, increased type I inflammation, or their combination underlies susceptibility to chronic mucocutaneus candidiasis in APS-1 is debated. OBJECTIVE: Our aim was to characterize the immunologic features in the cervicovaginal mucosa of females with APS-1. METHODS: Vaginal fluid was collected with a flocked swab from 17 females with APS-1 and 18 controls, and cytokine composition was analyzed using Luminex (Luminex Corporation, Austin, Tex). Cervical cell samples were obtained with a cervix brush from 6 patients and 6 healthy controls and subjected to transcriptome analysis. RESULTS: The vaginal fluid samples from patients with APS-1 had IFN-γ concentrations comparable to those of the controls (2.6 vs 2.4 pg/mL) but high concentrations of the TH1 chemokines CXCL9 and CXCL10 (1094 vs 110 pg/mL [P < .001] and 4033 vs 273 pg/mL [P = .001], respectively), whereas the IL-17 levels in the samples from the 2 groups were comparable (28 vs 8.8 pg/mL). RNA sequencing of the cervical cells revealed upregulation of pathways related to mucosal inflammation and cell death in the patients with APS-1. CONCLUSION: Excessive TH1 cell response appears to underlie disruption of the mucosal immune responses in the genital tract of patients with APS-1 and may contribute to susceptibility to candidiasis in the genital tract as well.


Assuntos
Colo do Útero , Poliendocrinopatias Autoimunes , Vagina , Humanos , Feminino , Vagina/imunologia , Poliendocrinopatias Autoimunes/imunologia , Adulto , Colo do Útero/imunologia , Colo do Útero/patologia , Pessoa de Meia-Idade , Citocinas/metabolismo , Citocinas/imunologia , Inflamação/imunologia , Interleucina-17/imunologia , Interleucina-17/metabolismo , Quimiocina CXCL9/imunologia , Quimiocina CXCL9/metabolismo , Adulto Jovem , Interferon gama/imunologia , Interferon gama/metabolismo , Candidíase Mucocutânea Crônica/imunologia , Candidíase Mucocutânea Crônica/genética , Mucosa/imunologia
2.
Genome Res ; 31(8): 1474-1485, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34340992

RESUMO

Small noncoding RNAs (sRNAs) play important roles during the oocyte-to-embryo transition (OET), when the maternal phenotype is reprogrammed and the embryo genome is gradually activated. The transcriptional program driving early human development has been studied with the focus mainly on protein-coding RNAs, and expression dynamics of sRNAs remain largely unexplored. We profiled sRNAs in human oocytes and early embryos using an RNA-sequencing (RNA-seq) method suitable for low inputs of material. We show that OET in humans is temporally coupled with the transition from predominant expression of oocyte short piRNAs (os-piRNAs) in oocytes, to activation of microRNA (miRNA) expression in cleavage stage embryos. Additionally, 3' mono- and oligoadenylation of miRNAs is markedly increased in zygotes. We hypothesize that this may modulate the function or stability of maternal miRNAs, some of which are retained throughout the first cell divisions in embryos. This study is the first of its kind elucidating the dynamics of sRNA expression and miRNA modification along a continuous trajectory of early human development and provides a valuable data set for in-depth interpretative analyses.


Assuntos
MicroRNAs , Embrião de Mamíferos/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Oócitos/metabolismo , Análise de Sequência de RNA/métodos , Zigoto/metabolismo
3.
Differentiation ; 128: 83-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36114074

RESUMO

Nuclear receptor subfamily 5 group A member 1 (NR5A1) encodes steroidogenic factor 1 (SF1), a key regulatory factor that determines gonadal development and coordinates endocrine functions. Here, we have established a stem cell-based model of human gonadal development and applied it to evaluate the effects of NR5A1 during the transition from bipotential gonad to testicular cells. We combined directed differentiation of human induced pluripotent stem cells (46,XY) with activation of endogenous NR5A1 expression by conditionally-inducible CRISPR activation. The resulting male gonadal-like cells expressed several Sertoli cell transcripts, secreted anti-Müllerian hormone and responded to follicle-stimulating hormone by producing sex steroid intermediates. These characteristics were not induced without NR5A1 activation. A total of 2691 differentially expressed genetic elements, including both coding and non-coding RNAs, were detected immediately following activation of NR5A1 expression. Of those, we identified novel gonad-related putative NR5A1 targets, such as SCARA5, which we validated also by immunocytochemistry. In addition, NR5A1 activation was associated with dynamic expression of multiple gonad- and infertility-related differentially expressed genes. In conclusion, by combining targeted differentiation and endogenous activation of NR5A1 we have for the first time, been able to examine in detail the effects of NR5A1 in early human gonadal cells. The model and results obtained provide a useful resource for future investigations exploring the causative reasons for gonadal dysgenesis and infertility in humans.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infertilidade , Humanos , Masculino , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Mutação , Células-Tronco Pluripotentes Induzidas/metabolismo , Gônadas/metabolismo , Receptores Depuradores Classe A/genética
4.
BMC Bioinformatics ; 22(1): 159, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33765908

RESUMO

BACKGROUND: Deep immune receptor sequencing, RepSeq, provides unprecedented opportunities for identifying and studying condition-associated T-cell clonotypes, represented by T-cell receptor (TCR) CDR3 sequences. However, due to the immense diversity of the immune repertoire, identification of condition relevant TCR CDR3s from total repertoires has mostly been limited to either "public" CDR3 sequences or to comparisons of CDR3 frequencies observed in a single individual. A methodology for the identification of condition-associated TCR CDR3s by direct population level comparison of RepSeq samples is currently lacking. RESULTS: We present a method for direct population level comparison of RepSeq samples using immune repertoire sub-units (or sub-repertoires) that are shared across individuals. The method first performs unsupervised clustering of CDR3s within each sample. It then finds matching clusters across samples, called immune sub-repertoires, and performs statistical differential abundance testing at the level of the identified sub-repertoires. It finally ranks CDR3s in differentially abundant sub-repertoires for relevance to the condition. We applied the method on total TCR CDR3ß RepSeq datasets of celiac disease patients, as well as on public datasets of yellow fever vaccination. The method successfully identified celiac disease associated CDR3ß sequences, as evidenced by considerable agreement of TRBV-gene and positional amino acid usage patterns in the detected CDR3ß sequences with previously known CDR3ßs specific to gluten in celiac disease. It also successfully recovered significantly high numbers of previously known CDR3ß sequences relevant to each condition than would be expected by chance. CONCLUSION: We conclude that immune sub-repertoires of similar immuno-genomic features shared across unrelated individuals can serve as viable units of immune repertoire comparison, serving as proxy for identification of condition-associated CDR3s.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T , Análise por Conglomerados , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T
6.
J Hum Genet ; 66(6): 613-623, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33446885

RESUMO

The phenotype of coeliac disease varies considerably for incompletely understood reasons. We investigated whether established coeliac disease susceptibility variants (SNPs) are individually or cumulatively associated with distinct phenotypes. We also tested whether a polygenic risk score (PRS) based on genome-wide associated (GWA) data could explain the phenotypic variation. The phenotypic association of 39 non-HLA coeliac disease SNPs was tested in 625 thoroughly phenotyped coeliac disease patients and 1817 controls. To assess their cumulative effects a weighted genetic risk score (wGRS39) was built, and stratified by tertiles. In our PRS model in cases, we took the summary statistics from the largest GWA study in coeliac disease and tested their association at eight P value thresholds (PT) with phenotypes. Altogether ten SNPs were associated with distinct phenotypes after correction for multiple testing (PEMP2 ≤ 0.05). The TLR7/TLR8 locus was associated with disease onset before and the SH2B3/ATXN2, ITGA4/UBE2E3 and IL2/IL21 loci after 7 years of age. The latter three loci were associated with a more severe small bowel mucosal damage and SH2B3/ATXN2 with type 1 diabetes. Patients at the highest wGRS39 tertiles had OR > 1.62 for having coeliac disease-related symptoms during childhood, a more severe small bowel mucosal damage, malabsorption and anaemia. PRS was associated only with dermatitis herpetiformis (PT = 0.2, PEMP2 = 0.02). Independent coeliac disease-susceptibility loci are associated with distinct phenotypes, suggesting that genetic factors play a role in determining the disease presentation. Moreover, the increased number of coeliac disease susceptibility SNPs might predispose to a more severe disease course.


Assuntos
Doença Celíaca/genética , Diabetes Mellitus/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idoso , Ataxina-2/genética , Doença Celíaca/epidemiologia , Doença Celíaca/patologia , Criança , Pré-Escolar , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/patologia , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética , Adulto Jovem
7.
J Ovarian Res ; 16(1): 194, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37726790

RESUMO

The nuclear receptor subfamily 5 group A member 1 (NR5A1), encoding steroidogenic factor 1 (SF-1), has been identified as a critical factor in gonadal development in animal studies. A previous study of ours suggested that upregulation of NR5A1 during early gonadal differentiation in male (46,XY) human pluripotent stem cells steers the cells into a more mature gonadal cell type. However, the detailed role of NR5A1 in female gonadal differentiation has yet to be determined. In this study, by combining the processes of gonadal differentiation and conditional gene activation, we show that NR5A1 induction predominantly upregulates the female gonadal marker inhibin subunit α (INHA) and steroidogenic markers steroidogenic acute regulatory protein (STAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), cytochrome P450 family 17 subfamily A member 1 (CYP17A1), hydroxy-delta-5-steroid dehydrogenase (HSD3B2) and hydroxysteroid 17-beta dehydrogenase 1 (HSD17B1). In contrast, NR5A1 induction did not seem to affect the bipotential gonadal markers gata binding protein 4 (GATA4) and Wilms' tumour suppressor 1 (WT1) nor the female gonadal markers r-spondin 1 (RSPO1) and wnt family member 4 (WNT4). Differentially expressed genes were highly associated with adrenal and ovarian steroidogenesis pathways. Moreover, time-series analysis revealed different dynamic changes between male and female induced samples, where continuously upregulated genes in female gonadal differentiation were mostly associated with adrenal steroidogenesis. Thus, in contrast to male gonadal differentiation, NR5A1 is necessary but not sufficient to steer human embryonic stem cell (hESC)-derived bipotential gonadal-like cells towards a more mature somatic, female cell fate. Instead, it seems to direct bipotential gonadal-like cells more towards a steroidogenic-like cell population. The information obtained in this study helps in elucidating the role of NR5A1 in gonadal differentiation of a female stem cell line.


Assuntos
Células-Tronco Embrionárias Humanas , Animais , Humanos , Feminino , Masculino , Sistemas CRISPR-Cas , Fator Esteroidogênico 1/genética , Diferenciação Celular/genética , Família 17 do Citocromo P450
8.
Front Genet ; 12: 635601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763116

RESUMO

Identification of human leukocyte antigen (HLA) alleles from next-generation sequencing (NGS) data is challenging because of the high polymorphism and mosaic nature of HLA genes. Owing to the complex nature of HLA genes and consequent challenges in allele assignment, Oxford Nanopore Technologies' (ONT) single-molecule sequencing technology has been of great interest due to its fitness for sequencing long reads. In addition to the read length, ONT's advantages are its portability and possibility for a rapid real-time sequencing, which enables a simultaneous data analysis. Here, we describe a targeted RNA-based method for HLA typing using ONT sequencing and SeqNext-HLA SeqPilot software (JSI Medical Systems GmbH). Twelve classical HLA genes were enriched from cDNA of 50 individuals, barcoded, pooled, and sequenced in 10 MinION R9.4 SpotON flow cell runs producing over 30,000 reads per sample. Using barcoded 2D reads, SeqPilot assigned HLA alleles to two-field typing resolution or higher with the average read depth of 1750x. Sequence analysis resulted in 99-100% accuracy at low-resolution level (one-field) and in 74-100% accuracy at high-resolution level (two-field) with the expected alleles. There are still some limitations with ONT RNA sequencing, such as noisy reads, homopolymer errors, and the lack of robust algorithms, which interfere with confident allele assignment. These issues need to be inspected carefully in the future to improve the allele call rates. Nevertheless, here we show that sequencing of multiplexed cDNA amplicon libraries on ONT MinION can produce accurate high-resolution typing results of 12 classical HLA loci. For HLA research, ONT RNA sequencing is a promising method due to its capability to sequence full-length HLA transcripts. In addition to HLA genotyping, the technique could also be applied for simultaneous expression analysis.

9.
Front Immunol ; 12: 629059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717155

RESUMO

The HLA gene complex is the most important single genetic factor in susceptibility to most diseases with autoimmune or autoinflammatory origin and in transplantation matching. Most studies have focused on the vast allelic variation in these genes; only a few studies have explored differences in the expression levels of HLA alleles. In this study, we quantified mRNA expression levels of HLA class I and II genes from peripheral blood samples of 50 healthy individuals. The gene- and allele-specific mRNA expression was assessed using unique molecular identifiers, which enabled PCR bias removal and calculation of the number of original mRNA transcripts. We identified differences in mRNA expression between different HLA genes and alleles. Our results suggest that HLA alleles are differentially expressed and these differences in expression levels are quantifiable using RNA sequencing technology. Our method provides novel insights into HLA research, and it can be applied to quantify expression differences of HLA alleles in various tissues and to evaluate the role of this type of variation in transplantation matching and susceptibility to autoimmune diseases.


Assuntos
Doenças Autoimunes/genética , Rejeição de Enxerto/genética , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Transplante de Órgãos , RNA Mensageiro/genética , Alelos , Expressão Gênica , Predisposição Genética para Doença , Variação Genética , Rejeição de Enxerto/prevenção & controle , Histocompatibilidade , Teste de Histocompatibilidade , Humanos , Análise de Sequência de RNA
10.
Data Brief ; 35: 106751, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33553521

RESUMO

T cell receptor (TCR) is a heterodimer consisting of TCRα and TCRß chains that are generated by somatic recombination of multiple gene segments. Nascent TCR repertoire undergoes thymic selections where non-functional and potentially autoreactive receptors are removed. During the last years, the development of high-throughput sequencing technology has allowed a large scale assessment of TCR repertoire and multiple analysis tools are now also available. In our recent manuscript, Human thymic T cell repertoire is imprinted with strong convergence to shared sequences[1], we show highly overlapping thymic TCR repertoires in unrelated individuals. In the current Data in Brief article, we provide a more detailed characterization of the basic features of these thymic and related peripheral blood TCR repertoires. The thymus samples were collected from eight infants undergoing corrective cardiac surgery, two of whom were monozygous twins [2]. In parallel with the surgery, a small aliquot of peripheral blood was drawn from four of the donors. Genomic DNA was extracted from mechanically released thymocytes and circulating leukocytes. The sequencing of TCRα and TCRß repertoires was performed at ImmunoSEQ platform (Adaptive Biotechnologies). The obtained repertoire data were analysed applying relevant features from immunoSEQ® 3.0 Analyzer (Adaptive Biotechnologies) and a freely available VDJTools software package for programming language R [3]. The current data analysis displays the basic features of the sequenced repertoires including observed TCR diversity, various descriptive TCR diversity measures, and V and J gene usage. In addition, multiple methods to calculate repertoire overlap between two individuals are applied. The raw sequence data provide a large database of reference TCRs in healthy individuals at an early developmental stage. The data can be exploited to improve existing computational models on TCR repertoire behaviour as well as in the generation of new models.

11.
J Transl Autoimmun ; 4: 100128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901814

RESUMO

PURPOSE AND OBJECTIVES: Given their role in homing immune cells to the intestine, CC motif chemokine receptor 9 (CCR9) and its specific ligand CC motif chemokine ligand 25 (CCL25) are interesting candidate genes for celiac disease. These genes are located in regions previously shown to be associated with or linked to celiac disease, but no investigations on their association with various celiac disease phenotypes have so far been conducted. Here we studied such associations of both genotyped and imputed single nucleotide polymorphisms (SNPs) with either regulatory function or exonic location of the CCR9 and CCL25 loci. RESULTS: Exploiting a carefully phenotyped cohort of 625 celiac disease patients and 1817 non-celiac controls, we identified that multiple SNPs with predicted regulatory function (RegulomeDB score ≤3a and/or eQTL effect) located between 100 kB upstream and downstream of CCR9 and CCL25 are associated with celiac disease and/or selected phenotypes. Of the genotyped SNPs in the CCR9 loci, rs213360 with an eQTL effect on CCR9 expression in blood was associated with celiac disease and all investigated phenotypes except high HLA risk. Rs1545985 with an eQTL on CCR9 expression and rs7652331 and rs12493471, both with RegulomeDB score ≤3a, were all associated with gastrointestinal symptoms and malabsorption and the latter additionally with anemia. The genotyped CCL25 SNPs rs952444 and rs882951, with RegulomeDB scores 1d and 1f respectively and eQTL effect on CCL25 expression in small intestine, were associated with gastrointestinal symptoms and malabsorption. The CCL25 SNP rs2303165 identified in sequencing followed by imputation was associated with partial villous atrophy. However, the association did not pass the permutation based multiple testing correction (PEMP2 > 0.05). CONCLUSIONS: We conclude that SNPs in the region of CCR9 and CCL25 with predicted functional effect or exonic localization likely contribute only modestly to various celiac disease phenotypes.

12.
Front Immunol ; 11: 594243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362776

RESUMO

The pathological mechanisms that lead to the onset and reactivation of celiac disease (CD) remain largely unknown. While gluten free diet (GFD) improves the intestinal damage and associated clinical symptoms in majority of cases, it falls short of providing full recovery. Additionally, late or misdiagnosis is also common as CD presents with a wide range of symptoms. Clear understanding of CD pathogenesis is thus critical to address both diagnostic and treatment concerns. We aimed to study the molecular impact of short gluten exposure in GFD treated CD patients, as well as identify biological pathways that remain altered constitutively in CD regardless of treatment. Using RNAseq profiling of PBMC samples collected from treated CD patients and gluten challenged patient and healthy controls, we explored the peripheral transcriptome in CD patients following a short gluten exposure. Short gluten exposure of just three days was enough to alter the genome-wide PBMC transcriptome of patients. Pathway analysis revealed gluten-induced upregulation of mainly immune response related pathways, both innate and adaptive, in CD patients. We evaluated the perturbation of biological pathways in sample-specific manner. Compared to gluten exposed healthy controls, pathways related to tight junction, olfactory transduction, metabolism of unsaturated fatty acids (such as arachidonic acid), metabolism of amino acids (such as cysteine and glutamate), and microbial infection were constitutively altered in CD patients regardless of treatment, while GFD treatment appears to mostly normalize immune response pathways to "healthy" state. Upstream regulator prediction analysis using differentially expressed genes identified constitutively activated regulators relatively proximal to previously reported CD associated loci, particularly SMARCA4 on 19p13.2 and CSF2 on 5q31. We also found constitutively upregulated genes in CD that are in CD associated genetic loci such as MEF2BNB-MEF2B (BORCS8-MEF2B) on 19p13.11 and CSTB on 21q22.3. RNAseq revealed strong effects of short oral gluten challenge on whole PBMC fraction and constitutively altered pathways in CD PBMC suggesting important factors other than gluten in CD pathogenesis.


Assuntos
Doença Celíaca/etiologia , Glutens/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Transcriptoma , Adulto , Idoso , Doença Celíaca/metabolismo , Doença Celíaca/terapia , Biologia Computacional/métodos , Dietoterapia , Dieta Livre de Glúten , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Mol Immunol ; 127: 112-123, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32961421

RESUMO

A highly diverse repertoire of T cell antigen receptors (TCR) is created in the thymus by recombination of gene segments and the insertion or deletion of nucleotides at the junctions. Using next-generation TCR sequencing we define here the features of recombination and selection in the human TCRα and TCRß locus, and show that a strikingly high proportion of the repertoire is shared by unrelated individuals. The thymic TCRα nucleotide repertoire was more diverse than TCRß, with 4.1 × 106 vs. 0.81 × 106 unique clonotypes, and contained nonproductive clonotypes at a higher frequency (69.2% vs. 21.2%). The convergence of distinct nucleotide clonotypes to the same amino acid sequences was higher in TCRα than in TCRß repertoire (1.45 vs. 1.06 nucleotide sequences per amino acid sequence in thymus). The gene segment usage was biased, and generally all individuals favored the same genes in both TCRα and TCRß loci. Despite the high diversity, a large fraction of the repertoire was found in more than one donor. The shared fraction was bigger in TCRα than TCRß repertoire, and more common in in-frame sequences than in nonproductive sequences. Thus, both biases in rearrangement and thymic selection are likely to contribute to the generation of shared repertoire in humans.


Assuntos
Impressão Genômica , Linfócitos T/imunologia , Timo/citologia , Sequência de Bases , Células Clonais , Regiões Determinantes de Complementaridade/genética , Feminino , Variação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Mutagênese Insercional , Probabilidade , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Recombinação Genética/genética
14.
Sci Rep ; 7(1): 17977, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269859

RESUMO

Celiac disease (CD) patients mount an abnormal immune response to gluten. T-cell receptor (TCR) repertoires directed to some immunodominant gluten peptides have previously been described, but the global immune response to in vivo gluten exposure in CD has not been systematically investigated yet. Here, we characterized signatures associated with gluten directed immune activity and identified gluten-induced T-cell clonotypes from total blood and gut TCR repertoires in an unbiased manner using immunosequencing. CD patient total TCR repertoires showed increased overlap and substantially altered TRBV-gene usage in both blood and gut samples, and increased diversity in the gut during gluten exposure. Using differential abundance analysis, we identified gluten-induced clonotypes in each patient that were composed of a large private and an important public component. Hierarchical clustering of public clonotypes associated with dietary gluten exposure identified subsets of highly similar clonotypes, the most proliferative of which showing significant enrichment for the motif ASS[LF]R[SW][TD][DT][TE][QA][YF] in PBMC repertoires. These results show that CD-associated clonotypes can be identified and that common gluten associated immune response features can be characterized in vivo from total repertoires, with potential use in disease stratification and monitoring.


Assuntos
Doença Celíaca/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Glutens/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Adulto , Idoso , Doença Celíaca/imunologia , Feminino , Glutens/efeitos adversos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade Celular/genética , Imunidade Celular/imunologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA