Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Cell Sci ; 130(17): 2867-2882, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28733455

RESUMO

Intercellular communication via gap junctions has an important role in controlling cell growth and in maintaining tissue homeostasis. Connexin 43 (Cx43; also known as GJA1) is the most abundantly expressed gap junction channel protein in humans and acts as a tumor suppressor in multiple tissue types. Cx43 is often dysregulated at the post-translational level during cancer development, resulting in loss of gap junctions. However, the molecular basis underlying the aberrant regulation of Cx43 in cancer cells has remained elusive. Here, we demonstrate that the oncogenic E3 ubiquitin ligase NEDD4 regulates the Cx43 protein level in HeLa cells, both under basal conditions and in response to protein kinase C activation. Furthermore, overexpression of NEDD4, but not a catalytically inactive form of NEDD4, was found to result in nearly complete loss of gap junctions and increased lysosomal degradation of Cx43 in both HeLa and C33A cervical carcinoma cells. Collectively, the data provide new insights into the molecular basis underlying the regulation of gap junction size and represent the first evidence that an oncogenic E3 ubiquitin ligase promotes loss of gap junctions and Cx43 degradation in human carcinoma cells.


Assuntos
Conexina 43/metabolismo , Endocitose , Junções Comunicantes/metabolismo , Lisossomos/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/ultraestrutura , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/ultraestrutura , Células HeLa , Humanos , Lisossomos/ultraestrutura , Proteína Quinase C/metabolismo , Proteólise/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Ubiquitinação/efeitos dos fármacos
2.
J Biol Chem ; 287(19): 15851-61, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22411987

RESUMO

SUMOylation is a posttranslational modification in which a member of the small ubiquitin-like modifier (SUMO) family of proteins is conjugated to lysine residues in specific target proteins. Most known SUMOylation target proteins are located in the nucleus, but there is increasing evidence that SUMO may also be a key determinant of many extranuclear processes. Gap junctions consist of arrays of intercellular channels that provide direct transfer of ions and small molecules between adjacent cells. Gap junction channels are formed by integral membrane proteins called connexins, of which the best-studied isoform is connexin 43 (Cx43). Here we show that Cx43 is posttranslationally modified by SUMOylation. The data suggest that the SUMO system regulates the Cx43 protein level and the level of functional Cx43 gap junctions at the plasma membrane. Cx43 was found to be modified by SUMO-1, -2, and -3. Evidence is provided that the membrane-proximal lysines at positions 144 and 237, located in the Cx43 intracellular loop and C-terminal tail, respectively, act as SUMO conjugation sites. Mutations of lysine 144 or lysine 237 resulted in reduced Cx43 SUMOylation and reduced Cx43 protein and gap junction levels. Altogether, these data identify Cx43 as a SUMOylation target protein and represent the first evidence that gap junctions are regulated by the SUMO system.


Assuntos
Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Western Blotting , Membrana Celular/metabolismo , Conexina 43/genética , Células HeLa , Humanos , Lisina/genética , Microscopia Confocal , Mutação , Ratos , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Transfecção
3.
Cancer Med ; 7(2): 433-444, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29341452

RESUMO

Constitutional epimutation of the two major mismatch repair genes, MLH1 and MSH2, has been identified as an alternative mechanism that predisposes to the development of Lynch syndrome. In the present work, we aimed to investigate the prevalence of MLH1 constitutional methylation in colorectal cancer (CRC) patients with abnormal expression of the MLH1 protein in their tumors. In a series of 38 patients who met clinical criteria for Lynch syndrome genetic testing, with loss of MLH1 expression in the tumor and with no germline mutations in the MLH1 gene (35/38) or with tumors presenting the BRAF p.Val600Glu mutation (3/38), we screened for constitutional methylation of the MLH1 gene promoter using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in various biological samples. We found four (4/38; 10.5%) patients with constitutional methylation in the MLH1 gene promoter. RNA studies demonstrated decreased MLH1 expression in the cases with constitutional methylation when compared with controls. We could infer the mosaic nature of MLH1 constitutional hypermethylation in tissues originated from different embryonic germ layers, and in one family we could show that it occurred de novo. We conclude that constitutional MLH1 methylation occurs in a significant proportion of patients who have loss of MLH1 protein expression in their tumors and no MLH1 pathogenic germline mutation. Furthermore, we provide evidence that MLH1 constitutional hypermethylation is the molecular mechanism behind about 3% of Lynch syndrome families diagnosed in our institution, especially in patients with early onset or multiple primary tumors without significant family history.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Metilação de DNA , Mutação em Linhagem Germinativa , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Adulto , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Regulação para Baixo , Epigênese Genética , Feminino , Seguimentos , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Prognóstico , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA