Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 29(1): 015301, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29115278

RESUMO

Self-standing ZnO nanotube (ZNT) arrays were fabricated on the surface of a GaN-based emitter with an indium tin oxide (ITO) transparent layer using a hydrothermal method and temperature cooling down process. For the greater enhancement of photon extraction efficiency, ZNT/SiO2 core-shell nanostructure arrays were fabricated on the emitter with a 430 nm wavelength. The optical output power of ZNT/SiO2 core-shell arrays on the emitter with ITO electrode was remarkably enhanced by 18.5%, 28.1%, and 55.9%, compared to those of ZNTs, ZNRs on an ITO film on an emitter and ITO film on an emitter as a conventional emitter, respectively. The large enhancement in optical output is attributable to the synergistic effect of efficient photon injection from the ITO/GaN layer to ZNTs because of the well-matched refractive indices and wave-guiding, in addition to the superior photon extraction by the SiO2 coating layer on the ZNTs.

2.
J Nanosci Nanotechnol ; 18(9): 5959-5964, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677724

RESUMO

We investigated the effect of the Ag interlayer thickness on the structural, electrical and optical properties of FTO/Ag/FTO structures designed for use in wide bandgap transparent conducting electrodes. The top and bottom FTO layers were deposited on α-Al2O3 (0001) substrates via RF magnetron sputtering at 300 °C and Ag interlayers were deposited using an e-beam evaporator system. We optimized the figure of merit by changing the thickness of the inserted Ag interlayer from 10 nm to 14 nm, achieving a maximum value of 2.46 × 10-3 Ω-1 and a resistivity of 6.4 × 10-4 Ω · cm using an FTO (70 nm)/Ag (14 nm)/FTO (40 nm) structure. Furthermore, the average optical transmittance in the deep UV range (300 to 330 nm) was 82.8%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA