Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 29(27): 8655-68, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19587272

RESUMO

The glutamate receptor-associated protein Homer2 regulates alcohol-induced neuroplasticity within the nucleus accumbens (NAC), but the precise intracellular signaling cascades involved are not known. This study examined the role for NAC metabotropic glutamate receptor (mGluR)-Homer2-phosphatidylinositol 3-kinase (PI3K) signaling in regulating excessive alcohol consumption within the context of the scheduled high alcohol consumption (SHAC) model of binge alcohol drinking. Repeated bouts of binge drinking ( approximately 1.5 g/kg per 30 min) elevated NAC Homer2a/b expression and increased PI3K activity in this region. Virus-mediated knockdown of NAC Homer2b expression attenuated alcohol intake, as did an intra-NAC infusion of the mGluR5 antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine hydrochloride] (0.1-1 microg/side) and the PI3K antagonist wortmannin (50 ng/side), supporting necessary roles for mGluR5/Homer2/PI3K in binge alcohol drinking. Moreover, when compared with wild-type littermates, transgenic mice with an F1128R point mutation in mGluR5 that markedly reduces Homer binding exhibited a 50% reduction in binge alcohol drinking, which was related to reduced NAC basal PI3K activity. Consistent with the hypothesis that mGluR5-Homer-PI3K signaling may be a mechanism governing excessive alcohol intake, the "anti-binge" effects of MPEP and wortmannin were not additive, nor were they observed in the mGluR5(F1128R) transgenic mice. Finally, mice genetically selected for a high versus low SHAC phenotype differed in NAC mGluR, Homer2, and PI3K activity, consistent with the hypothesis that augmented NAC mGluR5-Homer2-PI3K signaling predisposes a high binge alcohol-drinking phenotype. Together, these data point to an important role for NAC mGluR5-Homer2-PI3K signaling in regulating binge-like alcohol consumption that has relevance for our understanding of the neurobiology of alcoholism and its pharmacotherapy.


Assuntos
Alcoolismo/metabolismo , Proteínas de Transporte/fisiologia , Etanol/toxicidade , Núcleo Accumbens/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/fisiologia , Alcoolismo/enzimologia , Alcoolismo/genética , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Proteínas de Arcabouço Homer , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/enzimologia , Fenótipo , Fosfatidilinositol 3-Quinases/biossíntese , Fosfatidilinositol 3-Quinases/genética , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/biossíntese , Receptores de Glutamato Metabotrópico/genética , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos
2.
Horm Behav ; 58(1): 82-90, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19854195

RESUMO

Binge drinking, defined as achieving blood ethanol concentrations (BEC) of 80 mg%, has been increasing in adolescents and was reported to predispose later physical dependence. The present experiments utilized an animal model of binge drinking to compare the effect of ethanol "binge" experience during adolescence or adulthood on subsequent ethanol intake in male and female C57BL/6 mice. Adolescent and adult mice were initially exposed to the scheduled high alcohol consumption procedure, which produces BECs that exceed the levels for binge drinking following a 30-min ethanol session every third day. Ethanol intake and BECs were significantly higher in the adolescent ( approximately 3 g/kg, 199 mg%) versus adult ( approximately 2 g/kg, 135 mg%) mice during the first three ethanol sessions, but were more equivalent during the final two ethanol sessions (1.85-2.0 g/kg, 129-143 mg%). Then, separate groups of the ethanol-experienced mice were tested with ethanol naïve adolescent and adult mice for 2-h limited access (10% and 20% solutions) or 24-h (5%, 10% and 20% solutions) ethanol preference drinking. Limited access ethanol intake was significantly higher in female versus male mice, but was not altered by age or ethanol experience. In contrast, 24-h ethanol intake was significantly higher in the adolescent versus adult mice and in female versus male mice. Furthermore, binge drinking experience in the adolescent mice significantly increased subsequent ethanol intake, primarily due to intake in female mice. Thus, adolescent binge drinking significantly increased unlimited ethanol intake during adulthood, with female mice more susceptible to this effect.


Assuntos
Envelhecimento , Consumo de Bebidas Alcoólicas , Depressores do Sistema Nervoso Central/intoxicação , Etanol/intoxicação , Caracteres Sexuais , Consumo de Bebidas Alcoólicas/sangue , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Depressores do Sistema Nervoso Central/sangue , Relação Dose-Resposta a Droga , Etanol/administração & dosagem , Etanol/sangue , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
3.
Pharmacol Biochem Behav ; 92(2): 335-42, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19353807

RESUMO

The central extended amygdala (cExtA) is a limbic region proposed to play a key role in drug and alcohol addiction and to contain the medial nucleus accumbens shell (MNAc shell). The aim of this study was to examine the involvement of the MNAc shell in ethanol and sucrose consumption in a limited and free access procedure in the C57BL/6J (B6) mouse. Separate groups of mice received bilateral electrolytic lesions of the MNAc shell or sham surgery, and following recovery from surgery, were allowed to voluntarily consume ethanol (15% v/v) in a 2 h limited access 2-bottle-choice procedure. Following 1 week of limited access ethanol consumption, mice were given 1 week of limited access sucrose consumption. A separate group of lesioned and sham mice were given free access (24 h) to ethanol in a 2-bottle choice procedure and were run in parallel to the mice receiving limited access consumption. Electrolytic lesions of the MNAc shell decreased ethanol (but not sucrose) consumption in a limited access procedure, but did not alter free access ethanol consumption. These results suggest that the MNAc shell is a component of the underlying neural circuitry contributing to limited access alcohol consumption in the B6 mouse.


Assuntos
Etanol/administração & dosagem , Núcleo Accumbens/patologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Alcohol Clin Exp Res ; 32(8): 1408-16, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18565155

RESUMO

BACKGROUND: Allopregnanolone (ALLO) is a physiologically relevant neurosteroid modulator of GABA(A) receptors, and it exhibits a psychopharmacological profile that closely resembles the post-ingestive effects of ethanol. The 5alpha-reductase inhibitor finasteride (FIN), which inhibits biosynthesis of ALLO and structurally related neurosteroids, was previously demonstrated to reduce the maintenance of limited-access ethanol consumption. The primary aim of the current work was to determine whether FIN would reduce the acquisition of drinking in ethanol-naïve mice. METHODS: Male C57BL/6J (B6) mice were acclimated to a reverse light/dark schedule, and were provided ad libitum access to chow and water. Following habituation to vehicle injections (VEH; 20% w/v beta-cyclodextrin; i.p.) administered 22-hour prior to drinking sessions with water only, mice were divided into 3 treatment groups: vehicle control (VEH), 50 mg/kg FIN (FIN-50), and 100 mg/kg FIN (FIN-100). Twenty-two hours after the first treatment, mice were permitted the inaugural 2-hour limited access to a 10% v/v ethanol solution (10E) and water. The acquisition of 10E consumption and underlying drinking patterns were assessed during FIN treatment (7 days) and subsequent FIN withdrawal (13 days) phases. RESULTS: FIN dose-dependently blocked the acquisition of 10E drinking and prevented the development of ethanol preference, thereby suggesting that the GABAergic neurosteroids may be important in the establishment of stable drinking patterns. FIN-elicited reductions in 10E intake were primarily attributable to selective and marked reductions in bout frequency, as no changes were observed in bout size, duration, or lick rates following FIN treatment. FIN-treated mice continued to exhibit attenuated ethanol consumption after 2 weeks post-treatment, despite a full recovery in brain ALLO levels. A second study confirmed the rightward and downward shift in the acquisition of ethanol intake following 7 daily FIN injections. While there were no significant group differences in brain ALLO levels following the seventh day of ethanol drinking, ALLO levels were decreased by 28% in the FIN-50 group. CONCLUSIONS: Although the exact mechanism is unclear, FIN and other pharmacological interventions that modulate the GABAergic system may prove useful in curbing ethanol intake acquisition in at-risk individuals.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Comportamento Animal/efeitos dos fármacos , Colestenona 5 alfa-Redutase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Finasterida/farmacologia , Pregnanolona/metabolismo , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Alcoolismo/prevenção & controle , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/uso terapêutico , Finasterida/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de GABA-A/metabolismo , Fatores de Tempo
5.
Alcohol ; 42(3): 149-60, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18358676

RESUMO

Inbred strains are genetically stable across time and laboratories, allowing scientists to accumulate a record of phenotypes, including physiological characteristics and behaviors. To date, the C57/C58 family of inbred mouse strains has been identified as having the highest innate ethanol consumption, but some lineages have rarely or never been surveyed. Thus, the purpose of the present experiment was to measure ethanol preference and intake in 22 inbred mouse strains, some of which have never been tested for ethanol consumption. Male and female mice (A/J, BALB/cByJ, BTBR+T(tf/tf), BUB/BnJ, C57BL/6J, C57BLKS/J, C58/J, CZECH/Ei, DBA/2J, FVB/NJ, I/LnJ, LP/J, MA/MyJ, NOD/LtJ, NON/LtJ, NZB/B1NJ, NZW/LacJ, PERA/Ei, RIIIS/J, SEA/GnJ, SM/J, and 129S1/SvlmJ) were individually housed and given unlimited access in a two-bottle choice procedure to one bottle containing tap water and a second containing increasing concentrations of ethanol (3%, 6%, 10%), 0.2% saccharin, and then increasing concentrations of ethanol (3%, 6%, 10%) plus 0.2% saccharin. Mice were given access to each novel solution for a total of 4 days, with a bottle side change every other day. Consistent with previous studies, C57BL/6J (B6) mice consumed an ethanol dose of >10g/kg/day whereas DBA/2J (D2) mice consumed <2g/kg/day. No strain voluntarily consumed greater doses of ethanol than B6 mice. Although the C58 and C57BLKS strains showed high ethanol consumption levels that were comparable to B6 mice, the BUB and BTBR strains exhibited low ethanol intakes similar to D2 mice. The addition of 0.2% saccharin to the ethanol solutions significantly increased ethanol intake by most strains and altered the strain distribution pattern. Strong positive correlations (rs> or =0.83) were determined between consumption of the unsweetened versus sweetened ethanol solutions. Consumption of saccharin alone was significantly positively correlated with the sweetened ethanol solutions (rs=0.62-0.81), but the correlation with unsweetened ethanol solutions was considerably lower (rs=0.37-0.45). These results add new strains to the strain mean database that will facilitate the identification of genetic relationships between voluntary ethanol consumption, saccharin preference, and other phenotypes.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/psicologia , Animais , Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Interpretação Estatística de Dados , Bases de Dados Genéticas , Etanol/farmacologia , Camundongos , Camundongos Endogâmicos , Fenótipo , Sacarina/farmacologia , Edulcorantes/farmacologia
6.
Psychopharmacology (Berl) ; 178(4): 471-80, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15765261

RESUMO

RATIONALE: While prolonged access to ethanol (EtOH), or deprivations, or their combination have occasionally been shown to yield high levels of voluntary self-administration, in almost all cases, rodents do not self-administer alcohol to the degree that they will develop substantial, intoxicating blood alcohol levels and then continue to self-administer at these levels. OBJECTIVES: The purpose of the present series of experiments was to modify a fluid restriction procedure to demonstrate consistent, high EtOH consumption. METHODS: Male and female mice from an alcohol preferring inbred strain (C57BL/6J; B6) as well as from a genetically heterogeneous strain (WSC) were given varying periods of access to fluid, ranging from 90 min to 10 h per day, for 12-21 days. Every 3rd or 4th day, separate groups of mice were offered a 5, 7 or 10% EtOH solution for either 10 min or 30 min, followed by water for the remainder of the time. RESULTS: In all studies, stable high EtOH doses were consumed by both B6 and WSC mice across the EtOH sessions, exceeding 2 g/kg in a 30-min session. Mean blood EtOH concentration exceeded 1 mg/ml (i.e. 100 mg%), with values in individual animals ranging from 0.6 mg/ml to 3.4 mg/ml. Notably, mice receiving 10 h of fluid/day continued to consume 2 g/kg doses of EtOH. While this procedure did not produce subsequent preference for EtOH in WSC mice, consumption remained high in some animals. CONCLUSIONS: These data indicate that scheduling fluid intake produces high, stable EtOH consumption and BEC in male and female B6 and WSC mice.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Modelos Animais de Doenças , Psicofarmacologia/métodos , Administração Oral , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Líquidos/fisiologia , Esquema de Medicação , Etanol/sangue , Etanol/química , Etanol/farmacologia , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos/genética , Soluções/administração & dosagem , Soluções/química , Especificidade da Espécie , Fatores de Tempo , Água/administração & dosagem
7.
Alcohol ; 45(1): 33-44, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20843635

RESUMO

Drinking to intoxication or binge drinking is a hallmark characteristic of alcohol abuse. Although hard to model in rodents, the scheduled high alcohol consumption (SHAC) procedure generates high, stable ethanol intake and blood ethanol concentrations in mice to levels consistent with definitions of binge drinking. The purpose of the present studies was to determine the effects of pharmacological manipulation of the opioidergic, glutamatergic, and γ-aminobutyric acid (GABA)ergic systems on binge drinking with the SHAC procedure. Parallel manipulations were conducted in mice trained in operant self-administration of either sucrose or ethanol. For the SHAC procedure, genetically heterogeneous Withdrawal Seizure Control mice were given varying periods of fluid access, with a 30-min ethanol session every third day (total of seven). Mice were pretreated intraperitoneally with naltrexone (0, 0.6, or 1.25 mg/kg), baclofen (0, 2.5, or 5.0 mg/kg), or 2-methyl-6-(phenylethynyl)-pyridine (MPEP; 0, 3.0, or 10.0 mg/kg) before each ethanol session. For the operant self-administration procedure, separate groups of C57BL/6 mice were trained to complete a single response requirement (16 presses on the active lever) to gain 30 min of access to an ethanol or a sucrose solution. Mice received pretreatments of the same doses of naltrexone, MPEP, or baclofen before the self-administration sessions, with saline injections on intervening days. Naltrexone produced a dose-dependent decrease in binge drinking, and the highest dose also significantly decreased operant self-administration of ethanol and sucrose. Both doses of baclofen significantly decreased binge alcohol consumption, but the higher dose also tended to decrease water intake. The highest dose of baclofen also significantly decreased operant self-administration of sucrose. MPEP (10 mg/kg) significantly decreased binge alcohol consumption and sucrose self-administration. These results indicate that manipulation of the opioidergic, glutamatergic, and GABAergic systems significantly decreased binge drinking.


Assuntos
Etanol/intoxicação , Receptores de GABA-B/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Receptores Opioides/fisiologia , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Animais , Baclofeno/farmacologia , Modelos Animais de Doenças , Etanol/administração & dosagem , Etanol/sangue , Antagonistas de Aminoácidos Excitatórios/farmacologia , Agonistas dos Receptores de GABA-B/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Piridinas/farmacologia , Autoadministração , Sacarose/administração & dosagem
8.
Neuropharmacology ; 57(3): 250-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19501109

RESUMO

Neuronal nicotinic acetylcholine receptors (nAChRs) are believed to be critically involved in ethanol-related behaviors as well as in neurochemical responses to ethanol. However, discernment of nAChR contribution to ethanol reinforcement and consumption remains incomplete. The current studies examined the influence of the nAChR antagonist mecamylamine (MEC) on operant ethanol self-administration using a procedure that independently assessed appetitive and consumptive processes, and compared these findings to effects of MEC on sucrose self-administration. Male C57BL/6J (B6) mice were trained to respond for 30-min access to a retractable drinking tube containing either 10% v/v ethanol (10E) or 5% w/v sucrose (5S). Once trained, mice were habituated to saline injection and then treated with a series of MEC doses (0-8 mg/kg; i.p.) in a within-subject design. In a separate cohort, MEC was evaluated for its influence on locomotor activity. MEC dose-dependently reduced 10E and 5S self-administration. The suppression in ethanol intake was attributable to a reduction in bout frequency, whereas the attenuation in sucrose intake was due to a decrease in bout size. Doses of MEC (6-8 mg/kg) that altered drinking patterns were also found to impair locomotor activity. Although MEC non-selectively reduced 10E and 5S intakes in mice, there was some specificity in alterations of the underlying drinking pattern for each reinforcer. Assessment of drinking topography within an operant self-administration procedure may provide useful insights regarding the role of nAChR function in the regulation of ethanol consumption.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Mecamilamina/farmacologia , Antagonistas Nicotínicos/farmacologia , Sacarose/administração & dosagem , Análise de Variância , Animais , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante , Relação Dose-Resposta a Droga , Etanol/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Reforço Psicológico , Sacarina/administração & dosagem , Autoadministração , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA