Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Health Inf Sci Syst ; 11(1): 54, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981989

RESUMO

Finding patterns among risk factors and chronic illness can suggest similar causes, provide guidance to improve healthy lifestyles, and give clues for possible treatments for outliers. Prior studies have typically isolated data challenges from single-disease datasets. However, the predictive power of multiple diseases is more helpful in establishing a healthy lifestyle than investigating one disease. Most studies typically focus on single-disease datasets; however, to ensure that health advice is generalized and contemporary, the features that predict the likelihood of many diseases can improve health advice effectiveness when considering the patient's point of view. We construct and present a novel knowledge-based qualitative method to remove redundant features from a dataset and redefine the outliers. The results of our trials upon five annual chronic disease health surveys demonstrate that our Knowledge Graph-based feature selection, when applied to many machine learning and deep learning multi-label classifiers, can improve classification performance. Our methodology is compatible with future directions, such as graph neural networks. It provides clinicians with an efficient process to select the most relevant health survey questions and responses regarding single or many human organ systems.

2.
Health Inf Sci Syst ; 8(1): 10, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32117570

RESUMO

Applying Pearson correlation and semantic relations in building a heterogeneous information graph (HIG) to develop a classification model has achieved a notable performance in improving the accuracy of predicting the status of health risks. In this study, the approach that was used, integrated knowledge of the medical domain as well as taking advantage of applying Pearson correlation and semantic relations in building a classification model for diagnosis. The research mined knowledge which was extracted from titles and abstracts of MEDLINE to discover how to assess the links between objects relating to medical concepts. A knowledge-base HIG model then was developed for the prediction of a patient's health status. The results of the experiment showed that the knowledge-base model was superior to the baseline model and has demonstrated that the knowledge-base could help improve the performance of the classification model. The contribution of this study has been to provide a framework for applying a knowledge-base in the classification model which helps these models achieve the best performance of predictions. This study has also contributed a model to medical practice to help practitioners become more confident in making final decisions in diagnosing illness. Moreover, this study affirmed that biomedical literature could assist in building a classification model. This contribution will be advantageous for future researchers in mining the knowledge-base to develop different kinds of classification models.

3.
Neural Process Lett ; 52(3): 1703-1721, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32837244

RESUMO

Rapid increases in data volume and variety pose a challenge to safe drug prescription for health professionals like doctors and dentists. This is addressed by our study, which presents innovative approaches in mining data from drug corpus and extracting feature vectors to combine this knowledge with individual patient medical profiles. Within our three-tiered framework-the prediction layer, the knowledge layer and the presentation layer-we describe multiple approaches in computing similarity ratios from the feature vectors, illustrated with an example of applying the framework in a typical medical clinic. Experimental evaluation shows that the word embedding model performs better than the adverse network model, with a F score of 0.75. The F score is a common metrics used for evaluating the performance of classification algorithms. Similarity to a drug the patient is allergic to or is taking are important considerations for the suitability of a drug for prescription. Hence, such an approach, when integrated within the clinical work-flow, will reduce prescription errors thereby increasing patient health outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA