Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768703

RESUMO

As people age, their risks of developing degenerative diseases such as cancer, diabetes, Parkinson's Disease (PD), Alzheimer's Disease (AD), rheumatoid arthritis, and osteoporosis are generally increasing. Millions of people worldwide suffer from these diseases as they age. In most countries, neurodegenerative diseases are generally recognized as the number one cause afflicting the elderly. Endoplasmic reticulum (ER) stress has been suggested to be associated with some human neurological diseases, such as PD and AD. Melatonin, a neuroendocrine hormone mainly synthesized in the pineal gland, is involved in pleiotropically biological functions, including the control of the circadian rhythm, immune enhancement, and antioxidant, anti-aging, and anti-tumor effects. Although there are many papers on the prevention or suppression of diseases by melatonin, there are very few papers about the effects of melatonin on ER stress in neurons and neurodegenerative diseases. This paper aims to summarize and present the effects of melatonin reported so far, focusing on its effects on neurons and neurodegenerative diseases related to ER stress. Studies have shown that the primary target molecule of ER stress for melatonin is CHOP, and PERK and GRP78/BiP are the secondary target molecules. Therefore, melatonin is crucial in protecting neurons and treating neurodegeneration against ER stress.


Assuntos
Doença de Alzheimer , Melatonina , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Idoso , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/fisiologia , Doenças Neurodegenerativas/tratamento farmacológico , Estresse do Retículo Endoplasmático , Antioxidantes/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Chaperona BiP do Retículo Endoplasmático
2.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457166

RESUMO

The localization and expression of amylin protein in the rodent brain and mouse neuroblastoma Neuro-2a (N2a) are less widely known. Thus, this study investigated the expression distribution of amylin in the rat brain and N2a treated with steroid hormones. Amylin protein was identified in the olfactory bulb, cerebral cortex, dentate gyrus, thalamus, hypothalamus, ventral tegmental area (VTA), cerebellum, and brain stem in the rat brain. Additionally, the amylin protein was localized with the mature neurons of the cerebral cortex and dopaminergic neurons of the VTA. Progesterone (P4) and dexamethasone (Dex) significantly decreased, and 17ß-estradiol (E2) increased the amylin protein level in the cerebral cortex. The P4 receptor antagonist RU486 significantly influenced the effects of P4 and Dex, and the E2 receptor antagonist ICI 182,780 slightly changed E2's effect. Amylin protein expression was significantly reduced in the VTA by P4 and Dex, and its expression was changed only following P4 plus RU486 treatment. It was confirmed for the first time that amylin protein is strongly expressed in the cytoplasm in N2a cells using immunofluorescent staining. P4 increased the levels of amylin, and RU486 treatment decreased them. Dex significantly increased the levels of amylin protein. RU486 treatment reversed the effects of Dex. Therefore, amylin protein is expressed in the cerebral cortex neurons and dopaminergic neurons of the VTA of the immature rat brain. P4 and Dex influence the expression of amylin protein in the rat brain and N2a cells.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas , Mifepristona , Animais , Encéfalo/metabolismo , Estradiol/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Camundongos , Mifepristona/farmacologia , Progesterona/metabolismo , Ratos
3.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768769

RESUMO

Human amylin or islet amyloid polypeptide (hIAPP) is synthesized in the pancreatic ß-cells and has been shown to contribute to the pathogenesis of type 2 diabetes (T2D) in vitro and in vivo. This study compared amylin oligomerization/expression and signal transduction under endoplasmic reticulum (ER) stress and oxidative stress. pCMV-hIAPP-overexpressing INS-1E cells presented different patterns of amylin oligomerization/expression under ER stress and oxidative stress. Amylin oligomerization/expression under ER stress showed three amylin oligomers of less than 15 kDa size in pCMV-hIAPP-overexpressing cells, while one band was detected under oxidative stress. Under ER stress conditions, HIF1α, p-ERK, CHOP, Cu/Zn-SOD, and Bax were significantly increased in pCMV-hIAPP-overexpressing cells compared to the pCMV-Entry-expressing cells (control), whereas p-Akt, p-mTOR, Mn-SOD, catalase, and Bcl-2 were significantly decreased. Under oxidative stress conditions, HIF1α, p-ERK, CHOP, Mn-SOD, catalase, and Bcl-2 were significantly reduced in pCMV-hIAPP-overexpressing cells compared to the control, whereas p-mTOR, Cu/Zn-SOD, and Bax were significantly increased. In mitochondrial oxidative phosphorylation (OXPHOS), the mitochondrial complex I and complex IV were significantly decreased under ER stress conditions and significantly increased under oxidative stress conditions in pCMV-hIAPP-overexpressing cells compared to the control. The present study results demonstrate that amylin undergoes oligomerization under ER stress in pCMV-hIAPP-overexpressing cells. In addition, human amylin overexpression under ER stress in the pancreatic ß cells may enhance amylin protein aggregation, resulting in ß-cell dysfunction.


Assuntos
Estresse do Retículo Endoplasmático , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/biossíntese , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Estresse Oxidativo , Animais , Catalase/metabolismo , Linhagem Celular , Sobrevivência Celular/genética , Complexo I de Transporte de Elétrons/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Transdução de Sinais/fisiologia , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição CHOP/metabolismo , Proteína X Associada a bcl-2/metabolismo
4.
Cell Physiol Biochem ; 54(3): 438-456, 2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32357291

RESUMO

BACKGROUND/AIMS: Calcium homeostasis plays a crucial role in neuronal development and disease. Calbindin-D9k (CaBP-9k) acts as calcium modulators and sensors in various tissues. However, the neurobiological functions of CaBP-9k are unknown. METHODS: We used CaBP-9k knockout (KO) mice to investigate the roles of these gene in neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. We used anatomical and biochemical approaches to characterize functional abnormalities of the brain in the CaBP-9k KO mice. RESULTS: We found that the brains of CaBP-9k KO mice have increased APP/ß-amyloid, Tau, and α-synuclein accumulation and endoplasmic reticulum (ER) stress-induced apoptosis. Neurons deficient for these CaBP-9k had abnormal intracellular calcium levels and responses. ER stress inhibitor TUDCA reduced ER stress-induced apoptosis and restored ER stress- and apoptosis-related proteins expression to wild-type levels in CaBP-9k KO mice. Furthermore, treatment with TUDCA rescued the abnormal memory and motor behaviors exhibited by older CaBP-9k KO mice. CONCLUSION: Our results suggest that a loss of CaBP-9k may contribute to the onset and progression of neurodegenerative diseases.


Assuntos
Doença de Alzheimer/genética , Apoptose/genética , Calbindinas/genética , Estresse do Retículo Endoplasmático/genética , Doença de Parkinson/genética , Ácido Tauroquenodesoxicólico/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Calbindinas/metabolismo , Cálcio/metabolismo , Proliferação de Células/genética , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/genética , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , RNA Interferente Pequeno , Fatores de Risco , Ácido Tauroquenodesoxicólico/farmacologia , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
5.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033337

RESUMO

This study investigated the effect of dexamethasone (DEX) on intracellular calcium levels and the expressions of transient receptor potential cation channel subcomponent V member 6 (TRPV6), sodium-calcium exchanger 1 (NCX1), and plasma membrane calcium ATPase 1 (PMCA1) in A549 cells. The intracellular calcium level, by using the calcium indicator pGP-CMV-GCaMP6f, increased following DEX treatment for 6, 12, and 24 h in A549 cells. In addition, Rhod-4 assay after DEX treatment for 24 h showed that DEX increased the level of intracellular calcium. The expression of the calcium influx TRPV6 gene significantly increased, whereas the expressions of the calcium outflow NCX1 and PMCA1 genes significantly decreased with DEX treatment. The mRNA levels of surfactant protein genes SFTPA1, SFTPB, SFTPC, and SFTPD and the secreted airway mucin genes MUC1 and MUC5AC were investigated by treating cells with DEX. The DEX treatment decreased the mRNA levels of SFTPA1 and SFTPB but increased the mRNA levels of SFTPC and SFTPD. The MUC1 mRNA level was increased by DEX treatment, whereas MUC5AC mRNA was significantly decreased. These results indicate that DEX influences the intracellular calcium level through TRPV6, and affects pulmonary surfactant genes and secreted airway mucin genes in A549 cells.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/análise , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Canais de Cátion TRPV/metabolismo , Células A549 , Canais de Cálcio/genética , Linhagem Celular , Humanos , Mucina-5AC/genética , Mucina-5AC/metabolismo , Mucina-1/genética , Mucina-1/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/metabolismo , RNA Mensageiro/genética , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Canais de Cátion TRPV/genética
6.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503345

RESUMO

Triclosan (TCS) is one of the most common endocrine-disrupting chemicals (EDCs) present in household and personal wash products. Recently, concerns have been raised about the association between abnormal behavior in children and exposure to EDC during gestation. We hypothesized that exposure to TCS during gestation could affect brain development. Cortical neurons of mice were exposed in vitro to TCS. In addition, we examined in vivo whether maternal TCS administration can affect neurobehavioral development in the offspring generation. We determined that TCS can impair dendrite and axon growth by reducing average length and numbers of axons and dendrites. Additionally, TCS inhibited the proliferation of and promoted apoptosis in neuronal progenitor cells. Detailed behavioral analyses showed impaired acquisition of spatial learning and reference memory in offspring derived from dams exposed to TCS. The TCS-treated groups also showed cognition dysfunction and impairments in sociability and social novelty preference. Furthermore, TCS-treated groups exhibited increased anxiety-like behavior, but there was no significant change in depression-like behaviors. In addition, TCS-treated groups exhibited deficits in nesting behavior. Taken together, our results indicate that perinatal exposure to TCS induces neurodevelopment disorder, resulting in abnormal social behaviors, cognitive impairment, and deficits in spatial learning and memory in offspring.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Exposição Materna/efeitos adversos , Triclosan/efeitos adversos , Animais , Anti-Infecciosos Locais/efeitos adversos , Ansiedade/tratamento farmacológico , Axônios , Encéfalo/fisiopatologia , Morte Celular , Proliferação de Células , Transtornos Cognitivos/induzido quimicamente , Dendritos/metabolismo , Feminino , Deficiências da Aprendizagem/induzido quimicamente , Masculino , Aprendizagem em Labirinto , Memória , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Gravidez , Prenhez , Efeitos Tardios da Exposição Pré-Natal , Comportamento Social , Aprendizagem Espacial
7.
Mol Reprod Dev ; 86(11): 1705-1719, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31490595

RESUMO

Phytosphingosine-1-phosphate (P1P) is a signaling sphingolipid that regulates various physiological activities. However, little is known about the effect of P1P in the context of reproduction. Thus, we aimed to investigate the influence of P1P on oocyte maturation during porcine in vitro maturation (IVM). Here, we report the expression of S1PR1-3 among P1P receptors (S1PR1-4) in cumulus cells and oocytes. When P1P was administered at concentrations of 10, 50, 100, and 1,000 nM during IVM, the metaphase II rate was significantly increased in the 1,000 nM (1 µM) P1P treatment group. Maturation rate improvement by P1P supplementation was observed only in the presence of epidermal growth factor (EGF). Oocytes under the influence of P1P showed decreased intracellular reactive oxygen species levels but no significant differences in glutathione levels. In our molecular studies, P1P treatment upregulated gene expression involved in cumulus expansion (Has2 and EGF), antioxidant enzymes (SOD3 and Cat), and developmental competence (Oct4) while activating extracellular signal-regulated kinase1/2 and Akt signaling. P1P treatment also influenced oocyte survival by shifting the ratio of Bcl-2 to Bax while inactivating JNK signaling. We further demonstrated that oocytes matured with P1P displayed significantly higher developmental competence (cleavage and blastocyst [BL] formation rate) and greater BL quality (total cell number and the ratio of apoptotic cells) when activated via parthenogenetic activation (PA) and in vitro fertilization. Despite the low levels of endogenous P1P found in animals, exogenous P1P influenced animal reproduction, as shown by increased porcine oocyte maturation as well as preimplantation embryo development. This study and its findings are potentially relevant for both human and animal-assisted reproduction.


Assuntos
Apoptose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Oócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Células Cultivadas , Oócitos/citologia , Esfingosina/farmacologia , Suínos
8.
Int J Mol Sci ; 20(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731478

RESUMO

Intracellular calcium ion content is tightly regulated for the maintenance of cellular functions and cell survival. Calbindin-D9k (CaBP-9k) is responsible for regulating the distribution of cytosolic free-calcium ions. In this study, we aimed to investigate the effect of CaBP-9k on cell survival in pancreatic beta cells. Six-month-old wildtype CaBP-9k, CaBP-28k, and CaBP-9k/28k knockout (KO) mice were used to compare the pathological phenotypes of calcium-binding protein-deleted mice. Subsequently, the endoplasmic reticulum (ER) stress reducer tauroursodeoxycholic acid (TUDCA) was administered to wildtype and CaBP-9k KO mice. In vitro assessment of the role of CaBP-9k was performed following CaBP-9k overexpression and treatment with the ER stress inducer thapsigargin. Six-month-old CaBP-9k KO mice showed reduced islet volume and up-regulation of cell death markers resulting from ER stress, which led to pancreatic beta cell death. TUDCA treatment recovered islet volume, serum insulin level, and abdominal fat storage by CaBP-9k ablation. CaBP-9k overexpression elevated insulin secretion and recovered thapsigargin-induced ER stress in the INS-1E cell line. The results of this study show that CaBP-9k can protect pancreatic beta cell survival from ER stress and contribute to glucose homeostasis, which can reduce the risk of type 1 diabetes and provide the molecular basis for calcium supplementation to diabetic patients.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/prevenção & controle , Estresse do Retículo Endoplasmático , Células Secretoras de Insulina/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Knockout , Proteína G de Ligação ao Cálcio S100/genética , Ácido Tauroquenodesoxicólico/farmacologia , Tapsigargina/farmacologia
9.
Int J Mol Sci ; 19(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261648

RESUMO

We investigated whether combined fluid shear stress (FSS) and melatonin stimulated signal transduction in cilia-less MC3T3-E1 preosteoblast cells. MC3T3-E1 cells were treated with chloral hydrate or nocodazole, and mechanotransduction sensor primary cilia were removed. p-extracellular signal⁻regulated kinase (ERK) and p-Akt with/without melatonin increased with nocodazole treatment and decreased with chloral hydrate treatment, whereas p-ERK and p-Akt in FSS with/without melatonin increased in cilia-less groups compared to cilia groups. Furthermore, p-mammalian target of rapamycin (mTOR) with FSS-plus melatonin increased in cilia-less groups compared to only melatonin treatments in cilia groups. Expressions of Bcl-2, Cu/Zn-superoxide dismutase (SOD), and catalase proteins were higher in FSS with/without melatonin with cilia-less groups than only melatonin treatments in cilia groups. Bax protein expression was high in FSS-plus melatonin with chloral hydrate treatment. In chloral hydrate treatment with/without FSS, expressions of Cu/Zn-SOD, Mn-SOD, and catalase proteins were high compared to only-melatonin treatments. In nocodazole treatment, Mn-SOD protein expression without FSS was high, and catalase protein level with FSS was low, compared to only melatonin treatments. These data show that the combination with FSS and melatonin enhances ERK/Akt/mTOR signal in cilia-less MC3T3-E1, and the enhanced signaling in cilia-less MC3T3-E1 osteoblast cells may activate the anabolic effect for the preservation of cell structure and function.


Assuntos
Melatonina/farmacologia , Osteoblastos/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Mecânico , Animais , Antioxidantes/farmacologia , Linhagem Celular , Hidrato de Cloral/farmacologia , Cílios/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hidrodinâmica , Camundongos , Nocodazol/farmacologia , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Superóxido Dismutase-1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Moduladores de Tubulina/farmacologia
10.
Int J Mol Sci ; 17(4): 526, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27070587

RESUMO

Microgravity exposure can cause cardiovascular and immune disorders, muscle atrophy, osteoporosis, and loss of blood and plasma volume. A clinostat device is an effective ground-based tool for simulating microgravity. This study investigated how melatonin suppresses autophagy caused by simulated microgravity in preosteoblast MC3T3-E1 cells. In preosteoblast MC3T3-E1 cells, clinostat rotation induced a significant time-dependent increase in the levels of the autophagosomal marker microtubule-associated protein light chain (LC3), suggesting that autophagy is induced by clinostat rotation in these cells. Melatonin treatment (100, 200 nM) significantly attenuated the clinostat-induced increases in LC3 II protein, and immunofluorescence staining revealed decreased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2), indicating a decrease in autophagosomes. The levels of phosphorylation of mammalian target of rapamycin (p-mTOR) (Ser2448), phosphorylation of extracellular signal-regulated kinase (p-ERK), and phosphorylation of serine-threonine protein kinase (p-Akt) (Ser473) were significantly reduced by clinostat rotation. However, their expression levels were significantly recovered by melatonin treatment. Also, expression of the Bcl-2, truncated Bid, Cu/Zn- superoxide dismutase (SOD), and Mn-SOD proteins were significantly increased by melatonin treatment, whereas levels of Bax and catalase were decreased. The endoplasmic reticulum (ER) stress marker GRP78/BiP, IRE1α, and p-PERK proteins were significantly reduced by melatonin treatment. Treatment with the competitive melatonin receptor antagonist luzindole blocked melatonin-induced decreases in LC3 II levels. These results demonstrate that melatonin suppresses clinostat-induced autophagy through increasing the phosphorylation of the ERK/Akt/mTOR proteins. Consequently, melatonin appears to be a potential therapeutic agent for regulating microgravity-related bone loss or osteoporosis.


Assuntos
Autofagia/efeitos dos fármacos , Melatonina/farmacologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Simulação de Ausência de Peso/efeitos adversos , Animais , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Osteoblastos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
11.
Int J Mol Sci ; 16(11): 27401-10, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26580614

RESUMO

Low-level laser therapy/treatment (LLLT) using a minimally invasive laser needle system (MILNS) might enhance bone formation and suppress bone resorption. In this study, the use of 405 nm LLLT led to decreases in bone volume and bone mineral density (BMD) of tibial trabecular bone in wild-type (WT) and Per2 knockout (KO) mice. Bone volume and bone mineral density of tibial trabecular bone was decreased by 405 nm LLLT in Per2 KO compared to WT mice at two and four weeks. To determine the reduction in tibial bone, mRNA expressions of alkaline phosphatase (ALP) and Per2 were investigated at four weeks after 405 nm laser stimulation using MILNS. ALP gene expression was significantly reduced in the LLLT-stimulated right tibial bone of WT and Per2 KO mice compared to the non-irradiated left tibia (p < 0.001). Per2 mRNA expression in WT mice was significantly reduced in the LLLT-stimulated right tibial bone compared to the non-irradiated left tibia (p < 0.001). To identify the decrease in tibial bone mediated by the Per2 gene, levels of runt-related transcription factor 2 (Runx2) and ALP mRNAs were determined in non-irradiated WT and Per2 KO mice. These results demonstrated significant downregulation of Runx2 and ALP mRNA levels in Per2 KO mice (p < 0.001). Therefore, the reduction in tibial trabecular bone resulting from 405 nm LLLT using MILNS might be associated with Per2 gene expression.


Assuntos
Densidade Óssea , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Terapia com Luz de Baixa Intensidade , Proteínas Circadianas Period/genética , Tíbia/metabolismo , Tíbia/patologia , Animais , Osso e Ossos/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Proteínas Circadianas Period/metabolismo , Tíbia/efeitos da radiação , Microtomografia por Raio-X
12.
Int J Mol Sci ; 15(4): 5874-83, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24717410

RESUMO

Neuropeptides such as vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) are present in nerve fibers of bone tissues and have been suggested to potentially regulate bone remodeling. Oscillatory fluid flow (OFF)-induced shear stress is a potent signal in mechanotransduction that is capable of regulating both anabolic and catabolic bone remodeling. However, the interaction between neuropeptides and mechanical induction in bone remodeling is poorly understood. In this study, we attempted to quantify the effects of combined neuropeptides and mechanical stimuli on mRNA and protein expression related to bone resorption. Neuropeptides (VIP or CGRP) and/or OFF-induced shear stress were applied to MC3T3-E1 pre-osteoblastic cells and changes in receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) and osteoprotegerin (OPG) mRNA and protein levels were quantified. Neuropeptides and OFF-induced shear stress similarly decreased RANKL and increased OPG levels compared to control. Changes were not further enhanced with combined neuropeptides and OFF-induced shear stress. These results suggest that neuropeptides CGRP and VIP have an important role in suppressing bone resorptive activities through RANKL/OPG pathway, similar to mechanical loading.


Assuntos
Reabsorção Óssea/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Osteoprotegerina/biossíntese , Ligante RANK/biossíntese , Peptídeo Intestinal Vasoativo/farmacologia , Células 3T3 , Animais , Reabsorção Óssea/genética , Osso e Ossos/metabolismo , Mecanotransdução Celular , Camundongos , NF-kappa B/biossíntese , NF-kappa B/genética , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Osteogênese , Osteoprotegerina/genética , Ligante RANK/genética , RNA Mensageiro/biossíntese , Estresse Fisiológico
13.
Korean J Pain ; 37(1): 3-12, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072795

RESUMO

One of the most common sources of spinal pain syndromes is the facet joints. Cervical, thoracic, and lumbar facet joint pain syndromes comprise 55%, 42%, and 31% of chronic spinal pain syndromes, respectively. Common facet joint disorders are degenerative disorders, such as osteoarthritis, hypertrophied superior articular process, and facet joint cysts; septic arthritis; systemic and metabolic disorders, such as ankylosing spondylitis or gout; and traumatic dislocations. The facet pain syndrome from osteoarthritis is suspected from a patient's history (referred pain pattern) and physical examination (tenderness). Other facet joint disorders may cause radicular pain if mass effect from a facet joint cyst, hypertrophied superior articular process, or tumors compress the dorsal root ganglion. However, a high degree of morphological change does not always provoke pain. The superiority of innervating nerve block or direct joint injection for diagnosis and treatment is still a controversy. Treatment includes facet joint injection in facet joint osteoarthritis or whiplash injury provoking referred pain or decompression in mass effect in cases of hypertrophied superior articular process or facet joint cyst eliciting radicular pain. In addition, septic arthritis is treated using a proper antibiotic, based on infected tissue or blood culture. This review describes the diagnosis and treatment of common facet joint disorders.

14.
Korean J Pain ; 37(2): 107-118, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38504389

RESUMO

Nociplastic pain by the "International Association for the Study of Pain" is defined as pain that arises from altered nociception despite no clear evidence of nociceptive or neuropathic pain. Augmented central nervous system pain and sensory processing with altered pain modulation are suggested to be the mechanism of nociplastic pain. Clinical criteria for possible nociplastic pain affecting somatic structures include chronic regional pain and evoked pain hypersensitivity including allodynia with after-sensation. In addition to possible nociplastic pain, clinical criteria for probable nociplastic pain are pain hypersensitivity in the region of pain to non-noxious stimuli and presence of comorbidity such as generalized symptoms with sleep disturbance, fatigue, or cognitive problems with hypersensitivity of special senses. Criteria for definitive nociplastic pain is not determined yet. Eight specific disorders related to central sensitization are suggested to be restless leg syndrome, chronic fatigue syndrome, fibromyalgia, temporomandibular disorder, migraine or tension headache, irritable bowel syndrome, multiple chemical sensitivities, and whiplash injury; non-specific emotional disorders related to central sensitization include anxiety or panic attack and depression. These central sensitization pain syndromes are overlapped to previous functional pain syndromes which are unlike organic pain syndromes and have emotional components. Therefore, nociplastic pain can be understood as chronic altered nociception related to central sensitization including both sensory components with nociceptive and/or neuropathic pain and emotional components. Nociplastic pain may be developed to explain unexplained chronic pain beyond tissue damage or pathology regardless of its origin from nociceptive, neuropathic, emotional, or mixed pain components.

15.
Korean J Anesthesiol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637272

RESUMO

Background: Postoperative nausea and vomiting (PONV) refers to nausea and vomiting that occurs within 24-h after surgery or in the post-anesthesia care unit (PACU). Previous studies have reported that the use of remimazolam, a newer benzodiazepine (BDZ) hypnotic, for anesthesia results in less PONV. In this study, we compared the rate of PONV between sevoflurane and remimazolam after general anesthesia. Methods: In this prospective randomized controlled trial (RCT), participants aged 20-80 years who underwent elective laparoscopic cholecystectomy or hemicolectomy were randomized to either the remimazolam or sevoflurane group. The primary outcome was PONV incidence for 24-h after surgery. Secondary outcomes comprised of PONV at 30-min post-surgery, postoperative additional antiemetic use, and Quality of Recovery-15 (QOR-15) score at 24-h postoperatively. Results: Forty patients were enrolled in the study. The remimazolam group exhibited significantly lower rates of PONV for 24-h after surgery than did the sevoflurane group (remimazolam group vs. sevoflurane group; 5% vs. 45%, P = 0.003, respectively). The use of dexamethasone, a rescue antiemetic administered within 24 h of surgery, was substantially lower in the remimazolam group than in the sevoflurane group (0% in remimazolam vs. 30% in sevoflurane, P = 0.020). The QOR-15 score at 24-h after surgery showed no significant difference between the two groups. Conclusions: Compared to sevoflurane, opting for remimazolam as an intraoperative hypnotic may decrease the incidence of PONV and reduce antiemetic use for 24 h after laparoscopic surgery.

16.
Korean J Anesthesiol ; 77(2): 273-277, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37814398

RESUMO

BACKGROUND: Monitoring the oxygenation status is crucial during general anesthesia to ensure patient safety. Although noninvasive pulse oximetry is commonly used to monitor percutaneous oxygen saturation (SpO2), it may not accurately reflect changes in oxygen partial pressure when the latter is excessively high or low. The oxygen reserve index (ORi) provides real-time information about the oxygen reserve status. CASE: We present a case of successful management of subglottic stenosis using balloon bronchoscopy in an infant with a left ventricular assist device implantation under ORi monitoring to predict hypoxemia during the surgical procedure. CONCLUSIONS: Utilizing ORi monitoring during anesthesia for procedures involving apnea in critically ill infants can help predict impending desaturation before a drop in SpO2 occurs, allowing anesthesiologists to effectively anticipate and manage the apnea period. Continuous ORi monitoring offers valuable insights during surgical procedures, especially in infants with compromised respiratory and cardiovascular functions.


Assuntos
Coração Auxiliar , Oxigênio , Lactente , Humanos , Constrição Patológica , Apneia , Dilatação , Anestesia Geral
17.
Medicine (Baltimore) ; 103(5): e37166, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306513

RESUMO

RESULTS: After excluding 4 patients with an anesthesia duration of < 2 hours, data from 34 patients (1163 sets of tracheal and esophageal temperatures) were analyzed. Concordance correlation coefficient was 0.78. The overall mean bias (95% limits of agreement) between the tracheal and esophageal temperatures was -0.16°C (-0.65°C to 0.34°C). The percentage of temperature differences within ±â€…0.25°C was 73.5% ± 32.3, with a median of 89.4% [0,100]. The linear mixed-effects model revealed that the estimated intercept was 0.17°C with a 95% confidence interval (CI) of 0.13°C to 0.22°C. The duration of anesthesia and the number of temperature measurements were associated with higher concordance between the tracheal and esophageal temperatures in univariate analysis.


Assuntos
Temperatura Corporal , Umidificadores , Humanos , Temperatura , Temperatura Alta , Esôfago
18.
J Pineal Res ; 55(2): 207-20, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23711134

RESUMO

In this study, we investigated how melatonin mediates insulin synthesis through endoplasmic reticulum (ER) via HuD expression in rat insulinoma INS-1E cells. Under ER stress condition (thapsigargin with/without melatonin, tunicamycin with/without melatonin), phosphorylation of AMP-activated protein kinase (p-AMPK) was significantly increased when compared with only with/without melatonin (control/melatonin). Insulin receptor substrate (IRS) two protein was significantly reduced under conditions of ER stress when compared with control/melatonin, but no expression of IRS1 protein was observed. In thapsigargin treatment, melatonin (10, 50 µm) increased IRS2 protein expression in a dose-dependent manner. p-Akt (Ser473) expression significantly decreased under ER stress condition prior to control/melatonin. Melatonin (10, 50 µm) significantly reduced nuclear and cellular p85α expressions in a dose-dependent manner when compared with only thapsigargin or tunicamycin. These results indicate the activation of the aforementioned expressions under regulation of the pathway, AMPK → IRS2 → Akt/PKB → PI3K (p85α). However, mammalian target of rapamycin and raptor protein, mTORC1, was found to be independent of the ER stress response. In thapsigargin treatment, melatonin increased nuclear mammalian RNA-binding protein (HuD) expression and reduced cellular HuD expression and subsequently resulted in a decrease in cellular insulin level and rise in insulin secretion in a dose-dependent manner. In tunicamycin treatment, HuD and insulin proteins showed similar expression tendencies. These results indicate that ER stress/melatonin, especially thapsigargin/melatonin, increased nuclear HuD expression and subsequently resulted in a decrease in intracellular biosynthesis; it is hypothesized that extracellular secretion of insulin may be regulated by melatonin.


Assuntos
Proteínas ELAV/biossíntese , Estresse do Retículo Endoplasmático , Insulina/biossíntese , Insulinoma/metabolismo , Melatonina/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas ELAV/genética , Proteína Semelhante a ELAV 4 , Estresse do Retículo Endoplasmático/genética , Insulina/metabolismo , Secreção de Insulina , Insulinoma/genética , Neoplasias Pancreáticas/genética , Ratos
19.
J Pineal Res ; 54(4): 453-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23397978

RESUMO

In this study, we investigated whether fluid shear stress and melatonin in combination stimulate the anabolic proteins through the phosphorylation of extracellular signal-regulated kinase (p-ERK) in MC3T3-E1 osteoblast cells. First, we researched why fluid shear stress and melatonin in combination influence cell survival. Fluid shear stress (1 hr) and melatonin (1 mM) in combination reduced autophagic marker LC3-II compared with fluid shear stress (1 hr) and/or melatonin (0.1 mM). Under the same conditions for fluid shear stress, markers of cell survival signaling pathway p-ERK, phosphorylation of serine-threonine protein kinase (p-Akt), phosphorylation of mammalian target of rapamycin (p-mTOR), and p85-S6K were investigated. p-Akt, p-mTOR (Ser 2481) expressions increased with the addition of 1 mM melatonin prior to 0.1 mM melatonin treatment. However, p-S6K expression did not change significantly. Next, mitochondria activity including Bcl-2, Bax, catalase, and Mn-superoxide dismutase (Mn-SOD) were studied. Expressions of Bcl-2, Bax, and catalase proteins were low under fluid shear stress plus 1 mM melatonin compared with only fluid shear stress alone, whereas Mn-SOD expression was high compared with conditions of no fluid shear stress. Finally, the anabolic proteins of bone, osteoprotegerin, type I collagen (collagen I), and bone sialoprotein II (BSP II) were checked. These proteins increased with combined fluid shear stress (1, 4 hr) and melatonin (0.1, 1 mM). Together, these results suggest that fluid shear stress and melatonin in combination may increase the expression of anabolic proteins through the p-ERK in MC3T3-E1 osteoblast cells. Therefore, fluid shear stress in combination with melatonin may promote the anabolic response of osteoblasts.


Assuntos
Melatonina/farmacologia , Osteoblastos/efeitos dos fármacos , Proteínas/metabolismo , Estresse Mecânico , Células 3T3 , Animais , Camundongos , Osteoblastos/metabolismo
20.
Korean J Physiol Pharmacol ; 17(3): 189-95, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23776394

RESUMO

Amyloid-ß peptide (Aß), generated by proteolytic cleavage of the amyloid precursor protein (APP), plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). The key step in the generation of Aß is cleavage of APP by beta-site APP-cleaving enzyme 1 (BACE1). Levels of BACE1 are increased in vulnerable regions of the AD brain, but the underlying mechanism is unknown. In the present study, we reported the effects of ferrous ions at subtoxic concentrations on the mRNA levels of BACE1 and a-disintegrin-and-metalloproteinase 10 (ADAM10) in PC12 cells and the cell responses to ferrous ions. The cell survival in PC12 cells significantly decreased with 0 to 0.3 mM FeCl2, with 0.6 mM FeCl2 treatment resulting in significant reductions by about 75%. 4,6-diamidino-2-phenylindole (DAPI) staining showed that the nuclei appeared fragmented in 0.2 and 0.3 mM FeCl2. APP-α-carboxyl terminal fragment (APP-α-CTF) associations with ADAM10 and APP-ß-CTF with BACE1 were increased. Levels of ADAM10 and BACE1 mRNA increased in response to the concentrations of 0.25 mM, respectively. In addition, p-ERK and p-Bad (S112, S155) expressions were increased, suggesting that APP-CTF formation is related to ADAM10/BACE1 expression. Levels of Bcl-2 protein were increased, but significant changes were not observed in the expression of Bax. These data suggest that ion-induced enhanced expression of AMDA10/BACE1 could be one of the causes for APP-α/ß-CTF activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA