Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(23): 12200-12206, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38785373

RESUMO

Polyimide is commonly used as a substrate for flexible electronic devices because of its excellent thermal, physical, and electrical properties. To enhance the adhesion between substrates and electrodes, it is necessary to improve the hydrophilic properties of the polyimide. Various surface treatments, such as plasma treatment, laser ablation, and ultraviolet treatments, have been applied for this purpose. In this study, we demonstrated that Cu and Ti ion beam irradiation can temporarily create a superhydrophilic surface on polyimide after irradiation. When Cu or Ti ions bombarded the polyimide, the contact angle changed systematically with the beam current density and over time. We present atomic force microscopy (AFM) data for polyimide irradiated with Cu and Ti ions at different beam current densities and discuss the possible mechanisms behind the changes in the contact angle.

2.
Environ Res ; 239(Pt 1): 117217, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37775002

RESUMO

Marine organic aerosols play crucial roles in global climatic systems. However, their chemical properties and relationships with various potential organic sources still need clarification. This study employed high-resolution mass spectrometry to investigate the identity, origin, and transportation of organic aerosols in pristine Antarctic environments (King Sejong Station; 62.2°S, 58.8°W), where complex ocean-cryosphere-atmosphere interactions occur. First, we classified the aerosol samples into three clusters based on their air mass transport history. Next, we investigated the relationship between organic aerosols and their potential sources, including organic matter dissolved in the open ocean, coastal waters, and runoff waters. Cluster 1 (C1), in which the aerosols mainly originated from the open ocean area (i.e., pelagic zone-influenced), exhibited a higher abundance of lipid-like and protein-like organic aerosols than cluster 3 (C3), with ratios 1.8- and 1.6-times higher, respectively. In contrast, C3, characterized by longer air mass retention over sea ice and land areas (i.e., inshore-influenced), had higher lignin- and condensed aromatic structures (CAS)-like organic aerosols by 2.2- and 3.4-times compared to C1. Cluster 2 (C2) has intermediate characteristics between C1 and C3 concerning the chemical properties of the aerosols and air mass travel history. Notably, the chemical properties of the aerosols assigned to C1 are closely related to those of phytoplankton-derived organics enriched in the open ocean. In contrast, those of C3 are comparable to those of terrestrial plant-derived organics enriched in coastal and runoff waters. These findings help evaluate the source-dependent properties of organic aerosols in changing Antarctic environment.


Assuntos
Atmosfera , Camada de Gelo , Regiões Antárticas , Aerossóis , Lignina
3.
J Environ Sci (China) ; 132: 43-55, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37336609

RESUMO

The below-cloud aerosol scavenging process by precipitation is one of the most important mechanisms to remove aerosols from the atmosphere. Due to its complexity and dependence on both aerosol and raindrop sizes, wet scavenging process has been poorly treated, especially during the removal of fine particles. This makes the numerical simulation of below-cloud scavenging in large-scale aerosol models unrealistic. To consider the slip effects of submicron particles, a simplified expression for the diffusion scavenging was developed by approximating the Cunningham slip correction factor. The derived analytic solution was parameterized as a simple power function of rain intensity under the assumption of the lognormal size distribution of particles. The resultant approximated expression was compared to the observed data and the results of previous studies including a 3D atmospheric chemical transport model simulation. Compared with the default GEOS-Chem coefficient of 0.00106R0.61 and the observation-based coefficient of 0.0144R0.9268, the coefficient of a and b in Λm = aRb spread in the range of 0.0002- 0.1959 for a and 0.3261- 0.525 for b over a size distribution of GSD of 1.3-2.5 and a geometric mean diameter of 0.01- 2.5 µm. Overall, this study showed that the scavenging coefficient varies widely by orders of magnitude according to the size distribution of particles and rain intensity. This study also demonstrated that the obtained simplified expression could consider the theoretical approach of aerosol polydispersity. Our proposed analytic approach showed that results can be effectively applied for reduced computational burden in atmospheric modeling.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Simulação por Computador , Modelos Químicos , Aerossóis/análise , Chuva
4.
Proc Natl Acad Sci U S A ; 115(7): E1391-E1400, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29386380

RESUMO

The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology.

5.
Environ Sci Technol ; 53(15): 8621-8630, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31310508

RESUMO

The sources of primary and secondary aerosols in the Arctic are still poorly known. A number of surface seawater samples-with varying degrees of Arctic riverine and sea ice influences-were used in a sea spray generation chamber to test them for their potential to produce sea spray aerosols (SSA) and cloud condensation nuclei (CCN). Our interdisciplinary data showed that both sea salt and organic matter (OM) significantly influenced the SSA production. The number concentration of SSA in the coastal samples was negatively correlated with salinity and positively correlated with a number of OM tracers, including dissolved and chromophoric organic carbon (DOC, CDOM), marine microgels and chlorophyll a (Chl-a) but not for viral and bacterial abundances; indicating that OM of riverine origin enhances primary aerosol production. When all samples were considered, transparent exopolymer particles (TEP) were found to be the best indicator correlating positively with the ratio number concentration of SSA/salinity. CCN efficiency was not observed to differ between the SSA from the various samples, despite differences in organic characteristics. It is suggested that the large amount of freshwater from river runoff have a substantial impact on primary aerosols production mechanisms, possibly affecting the cloud radiative forcing.


Assuntos
Clorofila A , Água do Mar , Aerossóis , Regiões Árticas , Rios
6.
J Nanosci Nanotechnol ; 19(10): 6023-6030, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026902

RESUMO

We present a capacitorless one-transistor dynamic random-access memory (1T-DRAM) based on a Si/SiGe heterojunction double-gate MOSFET. In the proposed 1T-DRAM, the program process is based on band-to-band tunneling (BTBT) between gate 1 and gate 2 regions, and a sensing margin is defined by the amount of excess holes stored in the SiGe body region. Therefore, the sensing margin and retention time were affected by SiGe in the body region. The BTBT rate, enhanced by the small band-gap energy in SiGe, increased the sensing margin. The Si/SiGe heterojunction between the source/drain and body regions formed a potential barrier for hole carriers. The retention time was improved by suppressing the diffusion of hole carriers in the floating-body storage node. In addition, the retention characteristic was also enhanced by applying a gate underlap structure, which significantly reduced the electric field-induced recombination rate. The optimized device with a Si0.7Ge0.3 body and underlap length (Lunderlap) of 5 nm exhibited a high sensing margin of 6.16 µA/µm and long retention time of 131 ms at a high temperature of 358 K.

7.
J Nanosci Nanotechnol ; 19(10): 6070-6076, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026910

RESUMO

In this study, we have designed and analyzed the electron-hole bilayer (EHB) tunneling field-effect transistors (TFETs) based on various III-V compound semiconductor materials using two-dimensional (2-D) technology computer-aided design (TCAD) simulations. A recently proposed EHB TFET has lower subthreshold swing (S) and higher on-state current (Ion) than the conventional planar TFET, using band-to-band tunneling (BTBT) across the source-to-channel junction. It uses a bias-induced BTBT across the EHB formed by an electric field between the two gates. The III-V compound semiconductors have been applied to the EHB TFETs to improve the switching performances and current drivability owing to their superior material properties such as high electron mobility and high tunneling probability. After the design and analysis of devices based on various compound semiconductors, in terms of primary DC characteristics, a lower bandgap material (InAs) has been inserted in the tunneling region of the In0.53Ga0.47As EHB TFET to enhance the tunneling rate. This paper proposes an EHB TFET that uses vertically stacked InGaAs/InAs/InGaAs layers. Moreover, the design optimization process has been performed via simulations. The simulation results of the proposed EHB TFET show remarkable performances with Ion of 739.6 µA/µm, S of 1.9 mV/dec, and threshold voltage (Vth) of 7 mV at VDS 0.5 V.

8.
J Nanosci Nanotechnol ; 19(10): 6762-6766, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31027025

RESUMO

In this work, an InGaAs/GaAsSb-based P-type gate-all-around (GAA) arch-shaped tunneling fieldeffect transistor (TFET) was designed and analyzed using technology computer-aided design (TCAD) simulations. The device performance was investigated in views of the on-state current (Ion), subthreshold swing (SS), and Ion/Ioff ratio. For high current drivability, InGaAs/GaAsSb heterojunction is used to form the broken bandgap. Owing to the GAA arch-shaped structure of the TFET, the tunneling region between source and channel extended, thus Ion and SS are improved. However, it has some performance variations that are related with the height of the source region (Hsource), the epitaxially grown thickness of the channel (tepi), and the height of the drain region (Hdrain). Therefore, we performed a design optimization of the proposed device with the variables of Hsource, tepi, and Hdrain. The designed and optimized InGaAs/GaAsSb-based P-type GAA arch-shaped TFET demonstrated an Ion of 215 µA/µm SS of 18 mV/dec and Ion/Ioff of 1.64 × 1012.

9.
J Nanosci Nanotechnol ; 19(10): 6008-6015, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026900

RESUMO

In this study, the effect of an AlGaN back-barrier on the electrical characteristics of InAlGaN/GaN high electron mobility transistors (HEMTs) was investigated. The dependence of the thickness and the Al composition of the AlGaN back-barrier on the off-state current (Ioff) of the devices was investigated. An InAlGaN/GaN HEMT with an Al0.1GaN back-barrier of thickness 20 nm exhibited lower Ioff because of the carrier confinement effect, which was caused by the back-barrier. The carrier confinement effect also improved the maximum output current density and the transconductance (gm). Thus, the obtained cut-off frequency (fT) and maximum oscillation frequency (fmax) values for the InAlGaN/GaN HEMT with the 20 nm thick AlGaN back-barrier were 2.6% and 13% higher than those without the AlGaN back-barrier. In addition, the impact of the buffer trap density and GaN channel thickness were evaluated. In the case of a thickness of 20 nm for the Al0.1GaN back-barrier, a low Ioff was maintained although the trap density in the buffer layer was changed. In addition, as the gate length (LGa) decreased to 50 nm, the InAlGaN/GaN HEMT with the 20 nm thick Al0.1GaN back-barrier achieved better Ioff characteristics, lower drain-induced barrier lowering (DIBL) of 85.8 mV/V, and subthreshold swing (S) of 269 mV/dec owing to a reduction in the short-channel effect.

10.
J Nanosci Nanotechnol ; 19(10): 6036-6042, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026904

RESUMO

The effect of interface traps on InGaAs-based vertical gate-all-around (GAA) tunneling field-effect transistors (TFETs) has been investigated using technology computer-aided design (TCAD) simulation. The interface traps distributed within different energy levels (Et) in the energy bandgap of a semiconductor material exhibit various influences on the device performances. In this work, InGaAs-based TFETs are simulated to analyze the effects on the on-state current (Ion), off-state current (Ioff), threshold voltage (Vth), subthreshold swing (SS), and the ambipolar characteristics according to Et and type of the interface traps. We have confirmed that Ioff and SS are degraded by the interface traps. Further, it can be shown that Ion is mainly affected by the acceptor-like traps and ambipolar behavior is affected by the donor-like traps. All the effects increase as Et becomes closer to the midgap. The effects of the interface traps with gate underlap and overlap at the source-channel region also have been investigated, considering the device fabrication. Additionally, the analysis of the effect of junction trap created at the source-channel junction has been performed.

11.
J Nanosci Nanotechnol ; 19(10): 6755-6761, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31027024

RESUMO

This paper report a junctionless fin-type field-effect-transistor based capacitorless dynamic random access memory using three-dimensional technology computer-aided design simulations. The proposed 1T-DRAM is made up of a silicon germanium storage region surrounding a silicon fin. When the two materials form a heterojunction, a potential well is formed by the band discontinuity which carriers can be stored. During the program operation, band-to-band tunneling and gate-induced drain leakage occur simultaneously due to the gate and drain bias. Because of these phenomena, the electron-hole pair occurs, and generated holes are stored in the storage region by potential well. The holes formed are positively charged within the storage region, which mitigates the depletion of the channel and improves the operating current. The proposed device realizes the memory operation by the difference of the operating current depending on the presence or absence of the stored holes. In this work, the device is analyzed and optimized in detail. The proposed 1T-DRAM shows excellent performance with a retention time of 161 ms based on 50% of the maximum data margin.

12.
J Nanosci Nanotechnol ; 18(9): 6602-6605, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677842

RESUMO

The Ge/GaAs-based heterojunction gate-all-around (GAA) arch-shaped tunneling field-effect transistor (A-TFET) have been designed and optimized using technology computer-aided design (TCAD) simulations. In our previous work, the silicon-based A-TFET was designed and demonstrated. However, to progress the electrical characteristics of A-TFET, the III-V compound heterojunction structures which has enhanced electrical properties must be adopted. Thus, the germanium with gallium arsenide (Ge/GaAs) is considered as key materials of A-TFET. The proposed device has a Ge-based p-doped source, GaAs-based i-doped channel and GaAs-based n-doped drain. Due to the critical issues of device performances, the doping concentration of source and channel region (Dsource, Dchannel), height of source region (Hsource) and epitaxially grown thickness of channel (tepi) was selected as design optimization variables of Ge/GaAs-based GAA A-TFET. The DC characteristics such as on-state current (ion), off-state current (ioff), subthreshold-swing (S) were of extracted and analyzed. Finally, the proposed device has a gate length (LG) of 90 nm, Dsource 5 × 1019 cm-3, Dchannel of 1018 cm-3, tepi of 4 nm, Hsource of 90 nm, R of 10 nm and demonstrate an ion of 2 mA/µm, S of 12.9 mV/dec.

13.
J Nanosci Nanotechnol ; 18(9): 6593-6597, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677840

RESUMO

In this study, one-transistor dynamic random-access memory (1T-DRAM) based on a symmetric double-gate Si junctionless transistor is proposed using technology computer-aided design simulation. The proposed device uses double gates that play different roles in realizing 1T-DRAM operation. Gate 1 is used as a switching node, and Gate 2 is used as a storage node. By controlling the different two gate workfunctions, a potential barrier is adjusted to store hole effectively. The operation characteristics were investigated regarding four different memory operation states to write "1", write "0", read, and hold. Also, the effects of two different gate workfunctions on sensing margin and retention characteristics are closely investigated. Through a set of optimally set gate workfunctions, 33 µA/µm of sensing margin and 38 ms of retention time have been obtained.

14.
J Am Chem Soc ; 139(37): 12956-12967, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28845985

RESUMO

The ability to tailor the size and shape of nanoparticles (NPs) enables the investigation into the correlation between these parameters and optical, optoelectronic, electrical, magnetic, and catalytic properties. Despite several effective approaches available to synthesize NPs with a hollow interior, it remains challenging to have a general strategy for creating a wide diversity of high-quality hollow NPs with different dimensions and compositions on demand. Herein, we report on a general and robust strategy to in situ crafting of monodisperse hairy hollow noble metal NPs by capitalizing on rationally designed amphiphilic star-like triblock copolymers as nanoreactors. The intermediate blocks of star-like triblock copolymers can associate with metal precursors via strong interaction (i.e., direct coordination or electrostatic interaction), followed by reduction to yield hollow noble metal NPs. Notably, the outer blocks of star-like triblock copolymers function as ligands that intimately and permanently passivate the surface of hollow noble metal NPs (i.e., forming hairy permanently ligated hollow NPs with superior solubility in nonpolar solvents). More importantly, the diameter of the hollow interior and the thickness of the shell of NPs can be readily controlled. As such, the dimension-dependent optical properties of hollow NPs are scrutinized by combining experimental studies and theoretical modeling. The dye encapsulation/release studies indicated that hollow NPs may be utilized as attractive guest molecule nanocarriers. As the diversity of precursors are amenable to this star-like triblock copolymer nanoreactor strategy, it can conceptually be extended to produce a rich variety of hairy hollow NPs with different dimensions and functionalities for applications in catalysis, water purification, optical devices, lightweight fillers, and energy conversion and storage.

15.
Langmuir ; 33(50): 14325-14331, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29172535

RESUMO

A new method for enhancing photoluminescence from quantum dot (QD)/polymer nanocomposite films is proposed. Poly(lauryl methacrylate) (PLMA) thin films containing embedded QDs are intentionally allowed to undergo dewetting on substrates by exposure to a nonsolvent vapor. After controlled dewetting, films exhibited typical dewetting morphologies with increased amounts of scattering that served to outcouple photoluminescence from the film and reduce internal light propagation within the film. Up to a 5-fold enhancement of the film emission was achieved depending on material factors such as the initial film thickness and QD concentration within the film. An increase in initial film thickness was shown to increase the dewetted maximum feature size and its characteristic length until a critical thickness was reached where dewetting became inhibited. A unique light exposure-based photopatterning method is also presented for the creation of high contrast emissive patterns as guided by spatially controlled dewetting.

16.
Angew Chem Int Ed Engl ; 56(42): 12946-12951, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28719065

RESUMO

Despite impressive recent advances in the synthesis of lead chalcogenide solid nanoparticles, there are no examples of lead chalcogenide hollow nanoparticles (HNPs) with controlled diameter and shell thickness as current synthetic approaches for HNPs have inherent limitations associated with their complexity, inability to precisely control the dimensions, and limited possibilities with regard to applicable materials. Herein, we report on an unconventional strategy for crafting uniform lead chalcogenide (PbS and PbTe) HNPs with tailorable size, surface chemistry, and near-IR absorption. Amphiphilic star-like triblock copolymers [polystyrene-block-poly(acrylic acid)-block-polystyrene and polystyrene-block-poly(acrylic acid)-block-poly(3,4-ethylenedioxythiophene)] were rationally synthesized and exploited as nanoreactors for the formation of uniform PbS and PbTe HNPs. Compared to their solid counterparts, the near-IR absorption of the HNPs is blue-shifted owing to the hollow interior. This strategy can be readily extended to other types of intriguing low-band-gap HNPs for diverse applications.

17.
Small ; 12(48): 6714-6723, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27805778

RESUMO

In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., "hairs") with even length. Interestingly, amphiphilic star-like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer "hairs" are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long-term stability. This amphiphilic star-like block copolymer nanoreactor-based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self-assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors.


Assuntos
Nanopartículas/química , Nanoestruturas/química , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas
18.
Angew Chem Int Ed Engl ; 55(16): 5071-5, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26990250

RESUMO

The key to utilizing quantum dots (QDs) as lasing media is to effectively reduce non-radiative processes, such as Auger recombination and surface trapping. A robust strategy to craft a set of CdSe/Cd(1-x)Zn(x)Se(1-y)S(y)/ZnS core/graded shell-shell QDs with suppressed re-absorption, reduced Auger recombination rate, and tunable Stokes shift is presented. In sharp contrast to conventional CdSe/ZnS QDs, which have a large energy level mismatch between CdSe and ZnS and thus show strong re-absorption and a constrained Stokes shift, the as-synthesized CdSe/Cd(1-x)Zn(x)Se(1-y)S(y)/ZnS QDs exhibited the suppressed re-absorption of CdSe core and tunable Stokes shift as a direct consequence of the delocalization of the electron wavefunction over the entire QD. Such Stokes shift-engineered QDs with suppressed re-absorption may represent an important class of building blocks for use in lasers, light emitting diodes, solar concentrators, and parity-time symmetry materials and devices.

19.
Environ Sci Technol ; 49(20): 12024-35, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26389581

RESUMO

Ship-borne measurements of ambient aerosols were conducted during an 11 937 km cruise over the Arctic Ocean (cruise 1) and the Pacific Ocean (cruise 2). A frequent nucleation event was observed during cruise 1 under marine influence, and the abundant organic matter resulting from the strong biological activity in the ocean could contribute to the formation of new particles and their growth to a detectable size. Concentrations of particle mass and black carbon increased with increasing continental influence from polluted areas. During cruise 1, multiple peaks of hygroscopic growth factor (HGF) of 1.1-1.2, 1.4, and 1.6 were found, and higher amounts of volatile organic species existed in the particles compared to that during cruise 2, which is consistent with the greater availability of volatile organic species caused by the strong oceanic biological activity (cruise 1). Internal mixtures of volatile and nonhygroscopic organic species, nonvolatile and less-hygroscopic organic species, and nonvolatile and hygroscopic nss-sulfate with varying fractions can be assumed to constitute the submicrometer particles. On the basis of elemental composition and morphology, the submicrometer particles were classified into C-rich mixture, S-rich mixture, C/S-rich mixture, Na-rich mixture, C/P-rich mixture, and mineral-rich mixture. Consistently, the fraction of biological particles (i.e., P-containing particles) increased when the ship traveled along a strongly biologically active area.


Assuntos
Aerossóis/análise , Monitoramento Ambiental/métodos , Navios , Aerossóis/química , Regiões Árticas , Carbono/análise , Oceanos e Mares , Oceano Pacífico , Tamanho da Partícula , Fósforo/análise , Sódio/análise , Sulfatos/análise , Enxofre/análise , Compostos Orgânicos Voláteis/análise , Volatilização , Molhabilidade
20.
Environ Sci Technol ; 48(2): 909-19, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24328132

RESUMO

Aerosols have been associated with large uncertainties in estimates of the radiation budget and cloud formation processes in the Arctic. This paper reports the results of a study of in situ measurements of hygroscopicity, fraction of volatile species, mixing state, and off-line morphological and elemental analysis of Aitken and accumulation mode particles in the Arctic (Ny-Ålesund, Svalbard) in May and September 2012. The accumulation mode particles were more abundant in May than in September. This difference was due to more air mass flow from lower latitude continental areas, weaker vertical mixing, and less wet scavenging in May than in September, which may have led to a higher amount of long-range transport aerosols entering the Arctic in the spring. The Aitken mode particles observed intermittently in May were produced by nucleation, absent significant external mixing, whereas the accumulation mode particles displayed significant external mixing. The occurrence of an external mixing state was observed more often in May than in September and more often in accumulation mode particles than in Aitken mode particles, and it was associated more with continental air masses (Siberian) than with other air masses. The external mixing of the accumulation mode particles in May may have been caused by multiple sources (i.e., long-range transport aerosols with aging and marine aerosols). These groups of externally mixed particles were subdivided into different mixing structures (internal mixtures of predominantly sulfates and volatile organics without nonvolatile species and internal mixtures of sulfates and nonvolatile components, such as sea salts, minerals, and soot). The variations in the mixing states and chemical species of the Arctic aerosols in terms of their sizes, air masses, and seasons suggest that the continuous size-dependent measurements observed in this study are useful for obtaining better estimates of the effects of these aerosols on climate change.


Assuntos
Tamanho da Partícula , Material Particulado/química , Estações do Ano , Ar , Regiões Árticas , Geografia , Sulfatos/análise , Svalbard , Volatilização , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA