Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell Struct Funct ; 48(2): 211-221, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37766570

RESUMO

Secretory pathway proteins are cotranslationally translocated into the endoplasmic reticulum (ER) of metazoan cells through the protein channel, translocon. Given that there are far fewer translocons than ribosomes in a cell, it is essential that secretory protein-translating ribosomes only occupy translocons transiently. Therefore, if translocons are obstructed by ribosomes stalled or slowed in translational elongation, it possibly results in deleterious consequences to cellular function. Hence, we investigated how translocon clogging by stalled ribosomes affects mammalian cells. First, we constructed ER-destined translational arrest proteins (ER-TAP) as an artificial protein that clogged the translocon in the ER membrane. Here, we show that the translocon clogging by ER-TAP expression activates triage of signal sequences (SS) in which secretory pathway proteins harboring highly efficient SS are preferentially translocated into the ER lumen. Interestingly, the translocon obstructed status specifically activates inositol requiring enzyme 1α (IRE1α) but not protein kinase R-like ER kinase (PERK). Given that the IRE1α-XBP1 pathway mainly induces the translocon components, our discovery implies that lowered availability of translocon activates IRE1α, which induces translocon itself. This results in rebalance between protein influx into the ER and the cellular translocation capacity.Key words: endoplasmic reticulum, translocation capacity, translocon clogging, IRE1, signal sequence.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Animais , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sinais Direcionadores de Proteínas , Triagem , Estresse do Retículo Endoplasmático , Mamíferos/metabolismo
2.
Cell Struct Funct ; 44(2): 85-94, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31308351

RESUMO

In research on cell biology, organelles have been a major unit of such analyses. Researchers have assumed that the inside of an organelle is almost uniform in regards to its function, even though each organelle has multiple functions. However, we are now facing conundrums that cannot be resolved so long as we regard organelles as functionally uniform units. For instance, how can cells control the diverse patterns of glycosylation of various secretory proteins in the endoplasmic reticulum and Golgi in an orderly manner with high accuracy? Here, we introduce the novel concept of organelle zones as a solution; each organelle has functionally distinct zones, and zones in different organelles closely interact each other in order to perform complex cellular functions. This Copernican Revolution from organelle biology to organelle zone biology will drastically change and advance our thoughts about cells.Key words: organelle zone, contact site, ER stress, Golgi stress, organelle autoregulation.


Assuntos
Organelas/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos
3.
Cell Struct Funct ; 44(2): 137-151, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31534067

RESUMO

The Golgi apparatus is an organelle where membrane or secretory proteins receive post-translational modifications such as glycosylation and sulfation, after which the proteins are selectively transported to their final destinations through vesicular transport. When the synthesis of secretory or membrane proteins is increased and overwhelms the capacity of the Golgi (Golgi stress), eukaryotic cells activate a homeostatic mechanism called the Golgi stress response to augment the capacity of the Golgi. Four response pathways of the Golgi stress response have been identified, namely the TFE3, CREB3, HSP47, and proteoglycan pathways, which regulate the general function of the Golgi, apoptosis, cell survival, and proteoglycan glycosylation, respectively. Here, we identified a novel response pathway that augments the expression of glycosylation enzymes for mucins in response to insufficiency in mucin-type glycosylation in the Golgi (mucin-type Golgi stress), and we found that expression of glycosylation enzymes for mucins such as GALNT5, GALNT8, and GALNT18 was increased upon mucin-type-Golgi stress. We named this pathway the mucin pathway. Unexpectedly, mucin-type Golgi stress induced the expression and activation of TFE3, a key transcription factor regulating the TFE3 pathway, suggesting that the activated mucin pathway sends a crosstalk signal to the TFE3 pathway. We identified an enhancer element regulating transcriptional induction of TFE3 upon mucin-type Golgi stress, and named it the mucin-type Golgi stress response element, of which consensus was ACTTCC(N9)TCCCCA. These results suggested that crosstalk from the mucin pathway to the TFE3 pathway has an important role in the regulation of the mammalian Golgi stress response.Key words: Golgi stress, mucin, TFE3, organelle autoregulation, organelle zone.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Complexo de Golgi/metabolismo , Mucinas/metabolismo , Elementos de Resposta/genética , Complexo de Golgi/genética , Células HT29 , Células HeLa , Humanos , Mucinas/genética , Mutação Puntual
4.
Cell Struct Funct ; 44(1): 1-19, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30487368

RESUMO

The Golgi stress response is a homeostatic mechanism that augments the functional capacity of the Golgi apparatus when Golgi function becomes insufficient (Golgi stress). Three response pathways of the Golgi stress response have been identified in mammalian cells, the TFE3, HSP47 and CREB3 pathways, which augment the capacity of specific Golgi functions such as N-glycosylation, anti-apoptotic activity and pro-apoptotic activity, respectively. On the contrary, glycosylation of proteoglycans (PGs) is another important function of the Golgi, although the response pathway upregulating expression of glycosylation enzymes for PGs in response to Golgi stress remains unknown. Here, we found that expression of glycosylation enzymes for PGs was induced upon insufficiency of PG glycosylation capacity in the Golgi (PG-Golgi stress), and that transcriptional induction of genes encoding glycosylation enzymes for PGs was independent of the known Golgi stress response pathways and ER stress response. Promoter analyses of genes encoding these glycosylation enzymes revealed the novel enhancer elements PGSE-A and PGSE-B (the consensus sequences are CCGGGGCGGGGCG and TTTTACAATTGGTC, respectively), which regulate their transcriptional induction upon PG-Golgi stress. From these observations, the response pathway we discovered is a novel Golgi stress response pathway, which we have named the PG pathway.Key words: Golgi stress, proteoglycan, ER stress, organelle zone, organelle autoregulation.


Assuntos
Complexo de Golgi/genética , Proteoglicanas/metabolismo , Elementos de Resposta/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas de Choque Térmico HSP47/metabolismo , Células HeLa , Humanos , Transcrição Gênica
5.
Bioorg Med Chem Lett ; 29(14): 1732-1736, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31126855

RESUMO

OSW-1 is a plant-derived natural product proposed to selectively kill cancer cells by binding to members of the oxysterol binding protein family, thereby disrupting lipid/sterol homeostasis. However, how these protein-ligand interactions mediate cell death signaling has remained elusive. Here, we discovered that OSW-1 selectively activates the Golgi stress response leading to apoptosis, providing a mechanistic basis for the anticancer activity of OSW-1.


Assuntos
Antineoplásicos/uso terapêutico , Colestenonas/uso terapêutico , Complexo de Golgi/efeitos dos fármacos , Saponinas/uso terapêutico , Antineoplásicos/farmacologia , Colestenonas/farmacologia , Humanos , Saponinas/farmacologia
6.
Cell Struct Funct ; 42(1): 27-36, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179603

RESUMO

The capacity of each organelle in eukaryotic cells is tightly regulated in accordance with cellular demands by specific regulatory systems, which are generically termed organelle autoregulation. The Golgi stress response is one of the systems of organelle autoregulation and it augments the capacity of Golgi function if this becomes insufficient (Golgi stress). Recently, several pathways of the mammalian Golgi stress response have been identified, specifically the TFE3, HSP47, and CREB3 pathways. This review summarizes the essential parts of the Golgi stress response from the perspective of the organelle autoregulation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Estresse Fisiológico , Animais , Humanos
7.
Int J Mol Sci ; 18(2)2017 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-28208663

RESUMO

The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the "unfolded protein response" (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article.


Assuntos
Doenças do Sistema Endócrino/etiologia , Doenças do Sistema Endócrino/metabolismo , Estresse do Retículo Endoplasmático , Animais , Modelos Animais de Doenças , Doenças do Sistema Endócrino/diagnóstico , Doenças do Sistema Endócrino/terapia , Humanos , Mamíferos , Transdução de Sinais , Resposta a Proteínas não Dobradas
8.
Cell Struct Funct ; 41(2): 93-104, 2016 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-27251850

RESUMO

The Golgi stress response is a homeostatic mechanism that controls the capacity of the Golgi apparatus in accordance with cellular demands. When the capacity of the Golgi apparatus becomes insufficient (Golgi stress), transcription levels of Golgi-related genes encoding glycosylation enzymes, a Golgi structural protein, and components of vesicular transport are upregulated through a common cis-acting enhancer-the Golgi apparatus stress response element (GASE). Here, we identified the transcription factor MLX as a GASE-binding protein. MLX resides in the cytoplasm and does not bind to GASE in normal growth conditions, whereas MLX translocates into the nucleus and specifically binds to GASE in response to Golgi stress. Suppression of MLX expression increased transcriptional induction of target genes of the Golgi stress response, whereas overexpression of MLX reduced GASE-binding of TFE3 as well as transcriptional induction from GASE, suggesting that MLX is a transcriptional repressor of the mammalian Golgi stress response.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Complexo de Golgi/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Northern Blotting , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica/genética , Genes Reporter/genética , Complexo de Golgi/genética , Células HeLa , Humanos , Imuno-Histoquímica , Microscopia de Fluorescência , Ligação Proteica , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Elementos de Resposta/genética
9.
Cell Struct Funct ; 40(1): 13-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25399611

RESUMO

The Golgi stress response is a mechanism by which, under conditions of insufficient Golgi function (Golgi stress), the transcription of Golgi-related genes is upregulated through an enhancer, the Golgi apparatus stress response element (GASE), in order to maintain homeostasis in the Golgi. The molecular mechanisms associated with GASE remain to be clarified. Here, we identified TFE3 as a GASE-binding transcription factor. TFE3 was phosphorylated and retained in the cytoplasm in normal growth conditions, whereas it was dephosphorylated, translocated to the nucleus and activated Golgi-related genes through GASE under conditions of Golgi stress, e.g. in response to inhibition of oligosaccharide processing in the Golgi apparatus. From these observations, we concluded that the TFE3-GASE pathway is one of the regulatory pathways of the mammalian Golgi stress response, which regulates the expression of glycosylation-related proteins in response to insufficiency of glycosylation in the Golgi apparatus.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Elementos de Resposta , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Glicosilação , Células HeLa , Humanos , Metabolismo dos Lipídeos , Estresse Oxidativo/genética , Fosforilação , Proteoglicanas/metabolismo , Transcrição Gênica , Ativação Transcricional
10.
Curr Opin Nephrol Hypertens ; 24(4): 345-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26050121

RESUMO

PURPOSE OF REVIEW: Recently, a number of papers have reported that endoplasmic reticulum (ER) stress is involved in the onset of various kidney diseases, but the pathological mechanisms responsible have not been clarified. In this review, we summarize recent findings on this issue and try to clarify the pathology of ER stress-induced kidney diseases. RECENT FINDINGS: ER stress is evoked in various kidney diseases, including diabetic nephropathy, renal fibrosis, inflammation or osmolar contrast-induced renal injury, ischemia-reperfusion, genetic mutations of renal proteins, proteinuria and cyclosporine A treatment. In some cases, chemical chaperones, such as 4-phenylbutyrate and taurodeoxycholic acid, relieve the symptoms, indicating that ER stress-induced apoptosis of renal cells is one of the major causes of certain kidney diseases. Actually, the ER stress response provides protection against some kidney diseases, although the PERK-ATF4-CHOP pathway of the ER stress response is proapoptotic in some kidney diseases. The disposal of unfolded proteins by autophagy is also protective for some ER stress-induced kidney diseases. SUMMARY: Because ER stress is a major cause of some kidney diseases, the ER stress response and autophagy, which deal with unfolded proteins that accumulate in the ER, are promising therapeutic targets in acute and chronic kidney diseases.


Assuntos
Autofagia/fisiologia , Nefropatias Diabéticas/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Nefropatias/metabolismo , Rim/metabolismo , Animais , Nefropatias Diabéticas/genética , Estresse do Retículo Endoplasmático/genética , Humanos , Nefropatias/genética , Transdução de Sinais/fisiologia
11.
Cell Struct Funct ; 38(1): 67-79, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23470653

RESUMO

XBP1 is a key transcription factor regulating the mammalian endoplasmic reticulum (ER) stress response, which is a cytoprotective mechanism for dealing with an accumulation of unfolded proteins in the ER (ER stress). The expression of XBP1 is regulated by two different mechanisms: mRNA splicing and protein stability. When ER stress occurs, unspliced XBP1 mRNA is converted to mature mRNA, from which an active transcription factor, pXBP1(S), is translated and activates the transcription of ER-related genes to dispose of unfolded proteins. In the absence of ER stress, pXBP1(U) is translated from unspliced XBP1 mRNA and enhances the degradation of pXBP1(S). Here, we analyzed the regulatory mechanism of pXBP1(S) stability, and found that a SUMO-conjugase, UBC9, specifically bound to the leucine zipper motif of pXBP1(S) and increased the stability of pXBP1(S). Suppression of UBC9 expression by RNA interference reduced both the expression of pXBP1(S) and ER stress-induced transcription by pXBP1(S). Interestingly, overexpression of a UBC9 mutant deficient in SUMO-conjugating activity was able to increase pXBP1(S) expression as well as wild-type UBC9, indicating that UBC9 stabilizes pXBP1(S) without conjugating SUMO moieties. From these observations, we concluded that UBC9 is a novel regulator of the mammalian ER stress response.


Assuntos
Proteínas de Ligação a DNA , Estresse do Retículo Endoplasmático/genética , Splicing de RNA/genética , Fatores de Transcrição , Enzimas de Conjugação de Ubiquitina , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica , Células HeLa , Humanos , Mutação , Dobramento de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Saccharomyces cerevisiae/genética , Sumoilação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteína 1 de Ligação a X-Box
12.
Autophagy ; 19(7): 2111-2142, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719671

RESUMO

There are diverse links between macroautophagy/autophagy pathways and unfolded protein response (UPR) pathways under endoplasmic reticulum (ER) stress conditions to restore ER homeostasis. Phosphorylation of EIF2S1/eIF2α is an important mechanism that can regulate all three UPR pathways through transcriptional and translational reprogramming to maintain cellular homeostasis and overcome cellular stresses. In this study, to investigate the roles of EIF2S1 phosphorylation in regulation of autophagy during ER stress, we used EIF2S1 phosphorylation-deficient (A/A) cells in which residue 51 was mutated from serine to alanine. A/A cells exhibited defects in several steps of autophagic processes (such as autophagosome and autolysosome formation) that are regulated by the transcriptional activities of the autophagy master transcription factors TFEB and TFE3 under ER stress conditions. EIF2S1 phosphorylation was required for nuclear translocation of TFEB and TFE3 during ER stress. In addition, EIF2AK3/PERK, PPP3/calcineurin-mediated dephosphorylation of TFEB and TFE3, and YWHA/14-3-3 dissociation were required for their nuclear translocation, but were insufficient to induce their nuclear retention during ER stress. Overexpression of the activated ATF6/ATF6α form, XBP1s, and ATF4 differentially rescued defects of TFEB and TFE3 nuclear translocation in A/A cells during ER stress. Consequently, overexpression of the activated ATF6 or TFEB form more efficiently rescued autophagic defects, although XBP1s and ATF4 also displayed an ability to restore autophagy in A/A cells during ER stress. Our results suggest that EIF2S1 phosphorylation is important for autophagy and UPR pathways, to restore ER homeostasis and reveal how EIF2S1 phosphorylation connects UPR pathways to autophagy.Abbreviations: A/A: EIF2S1 phosphorylation-deficient; ACTB: actin beta; Ad-: adenovirus-; ATF6: activating transcription factor 6; ATZ: SERPINA1/α1-antitrypsin with an E342K (Z) mutation; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CDK4: cyclin dependent kinase 4; CDK6: cyclin dependent kinase 6; CHX: cycloheximide; CLEAR: coordinated lysosomal expression and regulation; Co-IP: coimmunoprecipitation; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; EBSS: Earle's Balanced Salt Solution; EGFP: enhanced green fluorescent protein; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERAD: endoplasmic reticulum-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBS: fetal bovine serum; gRNA: guide RNA; GSK3B/GSK3ß: glycogen synthase kinase 3 beta; HA: hemagglutinin; Hep: immortalized hepatocyte; IF: immunofluorescence; IRES: internal ribosome entry site; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LMB: leptomycin B; LPS: lipopolysaccharide; MAP1LC3A/B/LC3A/B: microtubule associated protein 1 light chain 3 alpha/beta; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; NES: nuclear export signal; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OE: overexpression; PBS: phosphate-buffered saline; PLA: proximity ligation assay; PPP3/calcineurin: protein phosphatase 3; PTM: post-translational modification; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; TEM: transmission electron microscopy; TFE3: transcription factor E3; TFEB: transcription factor EB; TFs: transcription factors; Tg: thapsigargin; Tm: tunicamycin; UPR: unfolded protein response; WB: western blot; WT: wild-type; Xbp1s: spliced Xbp1; XPO1/CRM1: exportin 1.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Fosforilação , Endorribonucleases/metabolismo , Fator de Iniciação 2 em Procariotos/metabolismo , Autofagia/genética , Calcineurina/metabolismo , Degradação Associada com o Retículo Endoplasmático , Dodecilsulfato de Sódio/metabolismo , Fibroblastos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Lisossomos/metabolismo
13.
Cell Struct Funct ; 37(1): 49-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22251794

RESUMO

The endoplasmic reticulum (ER) stress response is a cytoprotective mechanism against the accumulation of unfolded proteins in the ER (ER stress) that consists of three response pathways (the ATF6, IRE1 and PERK pathways) in mammals. These pathways regulate the transcription of ER-related genes through specific cis-acting elements, ERSE, UPRE and AARE, respectively. Because the mammalian ER stress response is markedly activated in professional secretory cells, its main function was thought to be to upregulate the capacity of protein folding in the ER in accordance with the increased synthesis of secretory proteins. Here, we found that ultraviolet A (UVA) irradiation induced the conversion of an ER-localized sensor pATF6α(P) to an active transcription factor pATF6α(N) in normal human dermal fibroblasts (NHDFs). UVA also induced IRE1-mediated splicing of XBP1 mRNA as well as PERK-mediated phosphorylation of an α subunit of eukaryotic initiation factor 2. Consistent with these observations, we found that UVA increased transcription from ERSE, UPRE and AARE elements. From these results, we concluded that UVA irradiation activates all branches of the mammalian ER stress response in NHDFs. This suggests that the mammalian ER stress response is activated by not only intrinsic stress but also environmental stress.


Assuntos
Estresse do Retículo Endoplasmático/efeitos da radiação , Retículo Endoplasmático/efeitos da radiação , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Células Cultivadas , Derme/citologia , Derme/metabolismo , Derme/efeitos da radiação , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Genes Reporter , Humanos , Luciferases , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dobramento de Proteína/efeitos da radiação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Raios Ultravioleta , Resposta a Proteínas não Dobradas/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
14.
Dev Cell ; 13(3): 365-76, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17765680

RESUMO

Metazoans express three unfolded protein response transducers (IRE1, PERK, and ATF6) ubiquitously to cope with endoplasmic reticulum (ER) stress. ATF6 is an ER membrane-bound transcription factor activated by ER stress-induced proteolysis and has been duplicated in mammals. Here, we generated ATF6alpha- and ATF6beta-knockout mice, which developed normally, and then found that their double knockout caused embryonic lethality. Analysis of mouse embryonic fibroblasts (MEFs) deficient in ATF6alpha or ATF6beta revealed that ATF6alpha is solely responsible for transcriptional induction of ER chaperones and that ATF6alpha heterodimerizes with XBP1 for the induction of ER-associated degradation components. ATF6alpha(-/-) MEFs are sensitive to ER stress. Unaltered responses observed in ATF6beta(-/-) MEFs indicate that ATF6beta is not a negative regulator of ATF6alpha. These results demonstrate that ATF6alpha functions as a critical regulator of ER quality control proteins in mammalian cells, in marked contrast to worm and fly cells in which IRE1 is responsible.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Nucleares/metabolismo , Fator 6 Ativador da Transcrição/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cruzamentos Genéticos , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Genes Reporter , Células HeLa , Heterozigoto , Humanos , Luciferases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/genética , Estresse Oxidativo , Fatores de Transcrição de Fator Regulador X , Tapsigargina/farmacologia , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição , Tunicamicina/farmacologia , Proteína 1 de Ligação a X-Box
16.
Cell Struct Funct ; 36(1): 1-12, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21150128

RESUMO

When increased production of secretory proteins overwhelms the capacity of the endoplasmic reticulum (ER) and the Golgi apparatus, eukaryotic cells expand their capacity to sustain secretory function. The capacity of the ER is enhanced by the mechanism called the ER stress response, but the mechanism regulating Golgi capacity (the Golgi stress response) has remained unclear. Here, we found that transcription of Golgi-related genes, including glycosylation enzymes as well as factors involved in post-Golgi vesicular transport and maintenance of Golgi structure, was upregulated upon treatment with monensin, an ionophore that disrupts the function of acidic organelles, including the Golgi apparatus and lysosomes by neutralizing their lumen. This transcriptional induction was found to be commonly regulated by a novel cis-acting element called the Golgi apparatus stress response element (GASE), whose consensus sequence is ACGTGgc. When the function of the Golgi apparatus was specifically disturbed by overexpression of GCP60, a Golgi-localized protein that binds to giantin, transcription from GASE was significantly induced. These results suggest that mammalian cells have the Golgi stress response, and that GASE regulates transcriptional induction involved in the Golgi stress response.


Assuntos
Complexo de Golgi/fisiologia , Elementos de Resposta/genética , Estresse Fisiológico/genética , Ativação Transcricional/genética , Sequência de Bases , Complexo de Golgi/efeitos dos fármacos , Células HeLa , Humanos , Monensin/farmacologia , Elementos de Resposta/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
17.
J Cell Biol ; 172(4): 565-75, 2006 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-16461360

RESUMO

Upon the accumulation of unfolded proteins in the mammalian endoplasmic reticulum (ER), X-box binding protein 1 (XBP1) premessenger RNA (premRNA) is converted to mature mRNA by unconventional splicing that is mediated by the endonuclease inositol-requiring enzyme 1. The transcription factor protein (p) XBP1 spliced (S), which is translated from mature XBP1 mRNA, contains the nuclear localization signal and the transcriptional activation domain and activates the transcription of target genes, including those encoding ER chaperones in the nucleus. We show that pXBP1 unspliced (U) encoded in XBP1 pre-mRNA was constitutively expressed and markedly accumulated at the recovery phase of ER stress. pXBP1(U) contained the nuclear exclusion signal instead of the transcriptional activation domain and shuttled between the nucleus and the cytoplasm. Interestingly, pXBP1(U) formed a complex with pXBP1(S), and the pXBP1(U)-pXBP1(S) complex was sequestered from the nucleus. Moreover, the complex was rapidly degraded by proteasomes because of the degradation motif contained in pXBP1(U). Thus, pXBP1(U) is a negative feedback regulator of pXBP1(S), which shuts off the transcription of target genes during the recovery phase of ER stress.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dobramento de Proteína , Processamento de Proteína/fisiologia , Precursores de RNA/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Cicloeximida/farmacologia , Citoplasma/metabolismo , Ditiotreitol/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Transporte Proteico/efeitos dos fármacos , Precursores de RNA/genética , RNA Mensageiro/biossíntese , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição , Proteína 1 de Ligação a X-Box
18.
J Cell Biol ; 172(3): 383-93, 2006 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-16449189

RESUMO

Proteins that are unfolded or misfolded in the endoplasmic reticulum (ER) must be refolded or degraded to maintain the homeostasis of the ER. Components of both productive folding and ER-associated degradation (ERAD) mechanisms are known to be up-regulated by the unfolded protein response (UPR). We describe two novel components of mammalian ERAD, Derlin-2 and -3, which show weak homology to Der1p, a transmembrane protein involved in yeast ERAD. Both Derlin-2 and -3 are up-regulated by the UPR, and at least Derlin-2 is a target of the IRE1 branch of the response, which is known to up-regulate ER degradation enhancing alpha-mannosidase-like protein (EDEM) and EDEM2, receptor-like molecules for misfolded glycoprotein. Overexpression of Derlin-2 or -3 accelerated degradation of misfolded glycoprotein, whereas their knockdown blocked degradation. Derlin-2 and -3 are associated with EDEM and p97, a cytosolic ATPase responsible for extraction of ERAD substrates. These findings indicate that Derlin-2 and -3 provide the missing link between EDEM and p97 in the process of degrading misfolded glycoproteins.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Neoplasias/fisiologia , Dobramento de Proteína , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Chaperona BiP do Retículo Endoplasmático , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Glicoproteínas , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Lectinas/genética , Lectinas/metabolismo , Lectinas/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Protamina Quinase/genética , Protamina Quinase/metabolismo , Ligação Proteica/fisiologia , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Fatores de Transcrição de Fator Regulador X , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição , Transfecção , Tunicamicina/farmacologia , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , alfa-Manosidase
19.
Mol Cell Biol ; 27(3): 1027-43, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17101776

RESUMO

ATF6 is a membrane-bound transcription factor activated by proteolysis in response to endoplasmic reticulum (ER) stress to induce the transcription of ER chaperone genes. We show here that, owing to the presence of intra- and intermolecular disulfide bridges formed between the two conserved cysteine residues in the luminal domain, ATF6 occurs in unstressed ER in monomer, dimer, and oligomer forms. Disulfide-bonded ATF6 is reduced upon treatment of cells with not only the reducing reagent dithiothreitol but also the glycosylation inhibitor tunicamycin, and the extent of reduction correlates with that of activation. Although reduction is not sufficient for activation, fractionation studies show that only reduced monomer ATF6 reaches the Golgi apparatus, where it is cleaved by the sequential action of the two proteases S1P and S2P. Reduced monomer ATF6 is found to be a better substrate than disulfide-bonded forms for S1P. ER stress-induced reduction is specific to ATF6 as the oligomeric status of a second ER membrane-bound transcription factor, LZIP/Luman, is not changed upon tunicamycin treatment and LZIP/Luman is well cleaved by S1P in the absence of ER stress. This mechanism ensures the strictness of regulation, in that the cell can only process ATF6 which has experienced the changes in the ER.


Assuntos
Fator 6 Ativador da Transcrição/química , Fator 6 Ativador da Transcrição/metabolismo , Dissulfetos/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Fator 6 Ativador da Transcrição/biossíntese , Alanina/genética , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Cisteína/genética , Retículo Endoplasmático/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Oxirredução/efeitos dos fármacos , Pró-Proteína Convertases/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Alinhamento de Sequência , Serina Endopeptidases/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Tunicamicina/farmacologia
20.
Cell Struct Funct ; 34(1): 1-10, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19122331

RESUMO

Cells from yeast to humans activate unconventional mRNA splicing when unfolded proteins accumulate in the endoplasmic reticulum (ER) under ER stress conditions. The substrate of this splicing in mammalian cells is XBP1 mRNA, which encodes the unfolded protein response (UPR)-specific transcription factor XBP1. The C-terminal region of XBP1 is switched as a result of the splicing. Thus, unspliced and spliced mRNAs produce pXBP1(U) of 261 aa and pXBP1(S) of 376 aa, respectively, with the N-terminal region containing the DNA-binding domain shared. As the pXBP1(S)-specific C-terminal region functions as an activation domain, pXBP1(S) can activate transcription efficiently. We recently found that pXBP1(U) shuttles between the nucleus and cytoplasm, owing to the presence of a nuclear exclusion signal in the pXBP1(U)-specific C-terminal region, in marked contrast to the exclusively nuclear localization of pXBP1(S). pXBP1(U) can associate with pXBP1(S), and pXBP1(U)-pXBP1(S) complex is rapidly degraded by the proteasome. Two other transcription factors are activated in response to ER stress, namely ATF6 and ATF4. ATF6 is a UPR-specific transcription factor, whereas ATF4 is activated by not only ER stress but also various other stimuli. In this study, we show that pXBP1(U) targets the active form of ATF6 but not ATF4 for destruction by the proteasome via direct association. This enhanced degradation is mediated by the degradation domain located at the pXBP1(U)-specific C-terminal end. We conclude that pXBP1(U) functions as a negative regulator of the UPR-specific transcription factors ATF6 and pXBP1(S).


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Humanos , Dobramento de Proteína , Splicing de RNA/fisiologia , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/genética , Proteína 1 de Ligação a X-Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA