Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biomacromolecules ; 18(12): 4411-4415, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29172447

RESUMO

The crystallite orientation and crystallographic domain structure of poly(ethylene oxide) (PEO) in cellulose nanofiber-incorporated (CNF-incorporated) PEO films developed for packaging materials were observed using wide-angle X-ray diffraction for different CNF filling ratios. When a CNF filling ratio of <10 wt % was used, the molecular chains in the PEO crystallite region were oriented in a direction perpendicular to the surface of the film; however, when the ratio was >50 wt %, the PEO molecular chains were oriented in a direction parallel to the surface of the film. The fiber axis of the CNFs became parallel to the surface of the PEO/CNF composite film when the filling ratio was >25 wt %. The change in the orientation of the PEO crystals occurred because increasing the amount of CNF in the composite films decreased the space in which the PEO could be crystallized. Furthermore, the hydrogen bonds between the PEO and the CNF may behave as crystallization nuclei for the PEO. Our results thus pave the way toward the development of packaging materials that are more impermeable to gases than the current materials.


Assuntos
Celulose/química , Nanofibras/química , Polietilenoglicóis/química , Materiais Biocompatíveis/química , Cristalização/métodos , Ligação de Hidrogênio , Difração de Raios X/métodos
2.
J Chem Phys ; 141(4): 044718, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25084948

RESUMO

The core-level and valence-band electronic structures of LixNi1-xO epitaxial thin films with x = 0, 0.27, and 0.48 were studied by hard X-ray photoelectron spectroscopy. A double peak structure, consisting of a main peak and a shoulder peak, and a satellite structure were observed in the Ni 2p3/2 core-level spectra. The intensity ratio of the shoulder to main peak in this double peak structure increased with increasing lithium content in LixNi1-xO. This lithium doping dependence of the Ni 2p3/2 core-level spectra was investigated using an extended cluster model, which included the Zhang-Rice (ZR) doublet bound states arising from a competition between O 2p - Ni 3d hybridization and the Ni on-site Coulomb interaction. The results indicated that the change in the intensity ratio in the main peak is because of a reduction in the ZR doublet bound states from lithium substitutions. This strongly suggests that holes compensating Li doping in LixNi1-xO are of primarily ZR character.

3.
Sci Rep ; 14(1): 10891, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740769

RESUMO

Direct growth of oxide film on silicon is usually prevented by extensive diffusion or chemical reaction between silicon (Si) and oxide materials. Thermodynamic stability of binary oxides is comprehensively investigated on Si substrates and shows possibility of chemical reaction of oxide materials on Si surface. However, the thermodynamic stability does not include any crystallographic factors, which is required for epitaxial growth. Adsorption energy evaluated by total energy estimated with the density functional theory predicted the orientation of epitaxial film growth on Si surface. For lower computing cost, the adsorption energy was estimated without any structural optimization (simple total of energy method). Although the adsorption energies were different on simple ToE method, the crystal orientation of epitaxial growth showed the same direction with/without the structural optimization. The results were agreed with previous simulations including structural optimization. Magnesium oxide (MgO), as example of epitaxial film, was experimentally deposited on Si substrates and compared with the results from the adsorption evaluation. X-ray diffraction showed cubic on cubic growth [MgO(100)//Si(100) and MgO(001)//Si(001)] which agreed with the results of the adsorption energy.

4.
J Nanosci Nanotechnol ; 12(3): 2320-5, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755053

RESUMO

Nano-cube MgO particles were formed on Si substrates by deposition of an MgO target using pulsed laser deposition method. An epitaxial film grows on Si(001) substrate with its contraction of lattice constants. In this study, expecting high quality MgO film, the MgO film prepared in the oxygen pressure ranging from 75-400 mTorr at the high temperature of -750 degrees C. The deposited MgO showed the growth of (001) preferred orientation on the Si(001) substrate. However, X-ray Photoelectron Spectroscopy (XPS) indicated the MgO film did not form a continuous film on the Si surface. Interestingly, the surface morphology observed by an Atomic Force Microscopy (AFM) showed nano-cube MgO particles scattered on the smooth surface of Si substrate. After annealing the nano-cube MgO, the shape of MgO particles were changed from nano-cube to round shaped particles. The AFM image of the surface showed round shaped MgO nanoparticles scattered on rough surface. X-ray Diffraction (XRD) revealed the epitaxial growth of MgO(001) with cubic on cubic arrangement on the Si(001) substrate (MgO[100] parallel to Si[100]).

5.
Sci Rep ; 12(1): 15809, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138094

RESUMO

Growth morphology of carbon clusters deposited on different substrates were investigated by theoretical and experimental approach. For theoretical approach, molecular dynamics was employed to evaluate an adsorptive stability of different size of carbon clusters placed on different substrates. The adsorptive stability was estimated by the difference of total energy of supercell designed as carbon cluster placed on a certain crystal plane of substrate. Among the simulations of this study, carbon cluster flatly settled down on the surface of SrTiO[Formula: see text](001). The result was experimentally verified with layer by layer growth of graphene by pulsed laser deposition in carbon dioxide atmosphere. The absorptive stability can be useful reference for screening substrate for any target material other than graphene.

6.
Nanotechnology ; 22(17): 175307, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21411922

RESUMO

After a laser annealing experiment on Si wafer, we found an asymmetric sheet resistance on the surface of the wafer. Periodic nano-strip grating lines (nano-SGLs) were self-organized along the trace of one-time scanning of the continuous wave (CW) laser. Depending on laser power, the nano-trench formed with a period ranging from 500 to 800 nm with a flat trough between trench structures. This simple method of combining the scanning laser with high scanning speed of 300 m min(-1) promises a large area of nanostructure fabrication with a high output. As a demonstration of the versatile method, concentric circles were drawn on silicon substrate rotated by a personal computer (PC) cooling fan. Even with such a simple system, the nano-SGL showed iridescence from the concentric circles.

7.
Sci Rep ; 9(1): 4304, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867541

RESUMO

We have investigated the structural, optical band gap, and electrical properties of (Fe2O3)0.5x:(NiO)1 - 0.5x (x = 0.3, 0.4, 0.5, 0.6 and 0.7) epitaxial thin films grown on an atomically smooth substrate at room temperature. With increasing Fe2O3 content, the rock-salt structure of the thin films transformed to a spinel structure above x = 0.6. In terms of the local structure, the increased ratio of Fe2+ ions to Fe3+ ions indicates that the octahedral sites of FeO were continuously transformed into distorted octahedral and tetrahedral sites. On the other hand, the NiO matrix was not affected by the local structure change. Chemical composition of Fe2O3:NiO affected the crystal structure, the electrical conductivity and the optical band gap of direct transition (3.35 to 2.99 eV).

8.
J Am Chem Soc ; 130(47): 15778-9, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-18983147

RESUMO

Layer-by-layer bottom-up crystal engineering of metal-organic crystals at the surface of sapphire or glass from organic (rubeanic acid and derivatives) and inorganic (Cu(2+)) components which when mixed in solution form instantly an amorphous solid with high proton conduction.

9.
ACS Omega ; 2(4): 1523-1528, 2017 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457520

RESUMO

Since the discovery of graphene by sticking and peeling scotch tape off graphite, it has also been prepared by other methods, such as thermal decomposition of SiC and chemical vapor deposition (CVD) with catalytic layer. Both the exfoliation and CVD methods impose to transfer the graphene layers on other insulating substrates for device applications. We reported that diamond grows in oxygen atmosphere (Yoshimoto M.; Nature1999, 399, 340-342) in which oxidative etching and depositing carbon compete under equivalent conditions. However, oxygen atmosphere is too intense for graphite growth. Although carbon dioxide (CO2) is produced after hydrocarbon combustion, it can be a gentle and tender oxidant in certain situations. Here, we show the direct growth of graphene on insulating substrates in 100% CO2 environment and observe its layer-by-layer growth on the stepped edge of an insulating substrate. The direct growth can have a significant advantage of excluding the necessary process of transferring the graphene on the insulating substrate over other common methods.

10.
Springerplus ; 5: 325, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27064310

RESUMO

Yttrium aluminum oxide Y3Al5O12 (YAG:Ce) nanoparticles were prepared by laser ablation in liquid, and the photoluminescence (PL) properties of the nanoparticles were investigated. A pellet of YAG:Ce synthesized by co-precipitation in deionized water was irradiated with a focused laser beam to obtain a solution containing dispersed nanoparticles. The compositions and morphologies of the nanoparticles were investigated by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray analysis, and dynamic light scattering. PL and photoluminescence excitation (PLE) spectra at room temperature and low temperature were measured using a fluorescence spectrophotometer. Nanoparticles of YAG single phase as a matrix were obtained by irradiation at high laser energy density. The average particle size was approximately 9 nm, although the nanoparticles were slightly aggregated. The broad peak centered at 540 nm in the PL spectrum was asymmetrically broadened at shorter wavelength. The intensity of the PLE peak centered at 340 nm decreased with increasing energy density of the laser beam. These phenomena were related to the nanosize effect of the YAG:Ce phosphor.

11.
Sci Rep ; 5: 14385, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26402241

RESUMO

Thin-film epitaxy is critical for investigating the original properties of materials. To obtain epitaxial films, careful consideration of the external conditions, i.e. single-crystal substrate, temperature, deposition pressure and fabrication method, is significantly important. In particular, selection of the single-crystal substrate is the first step towards fabrication of a high-quality film. Sapphire (single-crystalline α-Al2O3) is commonly used in industry as a thin-film crystal-growth substrate, and functional thin-film materials deposited on sapphire substrates have found industrial applications. However, while sapphire is a single crystal, two types of atomic planes exist in accordance with step height. Here we discuss the need to consider the lattice mismatch for each of the sapphire atomic layers. Furthermore, through cross-sectional transmission electron microscopy analysis, we demonstrate the uniepitaxial growth of cubic crystalline thin films on bistepped sapphire (0001) substrates.

12.
J Appl Crystallogr ; 48(Pt 6): 1896-1900, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26664345

RESUMO

Cubic type room-temperature (RT) epitaxial Li0.5Ni0.5O and NiO thin films with [111] orientation grown on ultra-smooth sapphire (0001) substrates were examined using synchrotron-based thin-film X-ray diffraction. The 1[Formula: see text]1 and 2[Formula: see text]2 rocking curves including six respective equivalent reflections of the Li0.5Ni0.5O and NiO thin films were recorded. The RT B1 factor, which appears in the Debye-Waller factor, of a cubic Li0.5Ni0.5O thin film was estimated to be 1.8 (4) Å2 from its 1[Formula: see text]1 and 2[Formula: see text]2 reflections, even though the Debye model was originally derived on the basis of one cubic element. The corresponding Debye temperature is 281 (39) K. Furthermore, the B2 factor in the pseudo-Debye-Waller factor is proposed. This parameter, which is evaluated using one reflection, was also determined for the Li0.5Ni0.5O thin film by treating Li0.5Ni0.5O and NiO as ideal NaCl crystal structures. A structural parameter for the atomic disorder is introduced and evaluated. This parameter includes the combined effects of thermal vibration, interstitial atoms and defects caused by Li doping using the two Debye-Waller factors.

13.
J Colloid Interface Sci ; 413: 71-7, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24183432

RESUMO

We report the development of a solution-based step-by-step technique, which utilizes the coordination bond between metalloporphyrin molecular units and metal linkages and results in the nuclear growth of nano-networks on solid substrates. The growth of the surface structures is strongly influenced by the choice of substrate materials and solvents: the molecule-substrate interaction and the solubility of the molecular units are important parameters in tuning the size and growth of the domains.

14.
Talanta ; 84(2): 579-82, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21376990

RESUMO

Metal oxide nanoparticles prepared by pulsed laser deposition (PLD) were applied to nonenzymatic glucose detection. NiO nanoparticles with size of 3 nm were deposited on glassy carbon (GC) and silicon substrates at room temperature in an oxygen atmosphere. Transmission electron microscope (TEM) image showed nanoparticles with the size of 3 nm uniformly scattered on the Si(001) substrate. Unlike co-sputtering nanoparticle and carbon simultaneously, the PLD method can easily control the surface coverage of nanoparticles on the surface of substrate by deposition time. Cyclic voltammetry was performed on the samples deposited on the GC substrates for electrochemical detection of glucose. The differences between peak currents with and without glucose was used to optimize the coverage of nanoparticles on carbon electrode. The results indicated that optimal coverage of nanoparticles on carbon electrode.

15.
Biomacromolecules ; 5(5): 1642-6, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15360268

RESUMO

Poly[(R)-3-hydroxybutyrate] (PHB) depolymerases adsorbed on poly(L-lactide) (PLLA) thin film were directly observed by atomic force microscopy (AFM). A PLLA thin film of 100 nm thickness was prepared on a silicon wafer by spin-cast method. The PLLA thin film was treated at 220 degrees C and quenched to room temperature, resulting in the formation of a completely amorphous film with a smooth surface. Then, the PHB depolymerases from Pseudomonas stutzeri YM1006 and Ralstonia pickettii T1 were dispersed on the amorphous PLLA thin film. Direct AFM observation has revealed that the PHB depolymerases bind in an elliptic shape on the surface of the PLLA thin film and that a small ridge is created around each enzyme molecule. After removal of the enzymes with 40% ethanol aqueous solution, small hollows were found on the PLLA thin film. These results suggest that a PHB depolymerase interacts with polyester molecules during their adsorption to make a hollow on the substrate surface.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Microscopia de Força Atômica/métodos , Poliésteres/metabolismo , Adsorção , Hidrolases de Éster Carboxílico/química , Poliésteres/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA