Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Artif Life ; : 1-21, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38018026

RESUMO

This article proposes a method for an artificial agent to behave in a social manner. Although defining proper social behavior is difficult because it differs from situation to situation, the agent following the proposed method adaptively behaves appropriately in each situation by empathizing with the surrounding others. The proposed method is achieved by incorporating empathy into active inference. We evaluated the proposed method regarding control of autonomous mobile robots in diverse situations. From the evaluation results, an agent controlled by the proposed method could behave more adaptively socially than an agent controlled by the standard active inference in the diverse situations. In the case of two agents, the agent controlled with the proposed method behaved in a social way that reduced the other agent's travel distance by 13.7% and increased the margin between the agents by 25.8%, even though it increased the agent's travel distance by 8.2%. Also, the agent controlled with the proposed method behaved more socially when it was surrounded by altruistic others but less socially when it was surrounded by selfish others.

2.
J Water Health ; 20(6): 972-984, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35768971

RESUMO

Sewage comprises multifarious information on sewershed characteristics. For instance, influent sewage quality parameters (ISQPs) (e.g., total nitrogen (TN)) are being monitored regularly at all treatment plants. However, the relationship between ISQPs and sewershed characteristics is rarely investigated. Therefore, this study statistically investigated relationships between ISQPs and sewershed characteristics, covering demographic, social, and economic properties in Tokyo city as an example of a megacity. To this end, we collected ISQPs and sewershed characteristic data from 2015 to 2020 in 10 sewersheds in Tokyo city. By principal component analysis, spatial variability of ISQPs was aggregated into two principal components (89.8% contribution in total), indicating organics/nutrients and inorganic salts, respectively. Concentrations of organics/nutrients were significantly correlated with the population in sewersheds (daytime population density, family size, age distribution, etc.). Inorganic salts are significantly correlated with land cover ratios. Finally, a multiple regression model was developed for estimating the concentration of TN based on sewershed characteristics (R2=0.97). Scenario analysis using the regression model revealed that possible population movements in response to the coronavirus pandemic would substantially reduce the concentration of TN. These results indicate close relationships between ISQPs and sewershed characteristics and the potential applicability of big data of ISQPs to estimate sewershed characteristics and vice versa.


Assuntos
Esgotos , Poluentes Químicos da Água , Nitrogênio/análise , Sais/análise , Esgotos/análise , Tóquio , Poluentes Químicos da Água/análise
3.
Environ Monit Assess ; 193(12): 845, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837550

RESUMO

Despite there being numerous models of trihalomethane (THM) formation, they are limited by high estimation errors, which can be close to the regulatory limits for THMs, due to the fluorescence quenching effect. In this research, the estimation error for THM formation was reduced by correcting the quenching effect. The trihalomethane formation potential (THMFP) test was conducted in the presence of chlorine and bromine, individually and in mixtures. The THM precursors used in this study were protein (bovine serum albumin; BSA), amino acids (tryptophan and tyrosine), chlorine, bromine, and Suwannee River natural organic matter (SWNOM). BSA tended to form bromodichloromethane (BDCM) rather than trichloromethane (TCM) during chlorination in the presence of bromide (Br-). In contrast, SWNOM tended to form chlorinated THMs (TCM) rather than brominated THMs (BDCM and dibromochloromethane; DBCM), and no TBMs were formed in these processes. BSA with SWNOM decreased the formation of TCM due to the decrease in the amount of TCM precursor in SWNOM through binding with BSA. The concentration of each THM species was predicted from the fluorescence intensity of peak C, corrected fluorescence intensity of peak T, and Br- concentration. The use of humic-like and corrected protein-like fluorescence in the excitation-emission matrix model for predicting THM species reduced the prediction error. In this research, correction of the fluorescence quenching decreased the mean percentage estimation error for TCM, BDCM, and DBCM from 47%, 35%, and > 100% in classical approaches to 6.6%, 26.9%, and 2.0%, respectively. This study is expected to make contributions in reporting the relationship between the concentration of natural organic matter compositions and the formation of THM species.


Assuntos
Poluentes Químicos da Água , Cloro , Monitoramento Ambiental , Fluorescência , Trialometanos/análise , Poluentes Químicos da Água/análise
4.
Ecotoxicol Environ Saf ; 165: 440-449, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30218967

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in urban environments. Urban road dust (URD) generated by traffic is an important PAH accumulator. Twelve priority PAHs in < 2000 µm fraction of ten URD samples from Tokyo, Japan were characterized based on profile distributions, carcinogenicity, toxicity, and source apportionment by cluster analysis, biplot and diagnostic ratios. PAH concentrations (mg/kg dry weight) in arterial roads, highways, highway parking, highway drainage pit and residential area URD samples were 2.06-4.24, 0.25-3.37, 3.44, 4.94, and 5.26 respectively, dominated by the ∑4 rings (average 46%) and ∑5 + 6 rings (average 41%) PAHs. Biplot analysis revealed that the antecedent dry weather period, vehicle frequency and organic matter content were the dominant environmental factors governing PAH profiles of different road types. The total amount of carcinogenic PAHs in the residential URD (2.12 mg/kg) was higher than those in the arterial road (0.60-2.00 mg/kg) and highway (0.10-1.84 mg/kg) URD. Toxic equivalent concentrations (TECs) of residential, arterial road and highway URD were 0.54, (0.12-0.57), and (0.02-0.51) mg/kg, respectively. The dominant PAH sources were found to be petrogenic combustion in arterial road and highway URD, and pyrogenic combustion consisting of a mix of biomass, petroleum and traffic-related sources in the residential and highway drainage pit samples. This is also the first study to find that TEC-based toxicity should not be taken as a measure of URD toxicity.


Assuntos
Poeira/análise , Poluentes Ambientais/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Carcinógenos/análise , Monitoramento Ambiental/métodos , Petróleo/análise , Tóquio , Tempo (Meteorologia)
5.
Environ Sci Technol ; 51(12): 7101-7110, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28537710

RESUMO

Natural organic matter (NOM) is a heterogeneous mixture of organic compounds that is omnipresent in natural waters. To date, the understanding of the adsorption of NOM components by carbon nanotubes (CNTs) is limited because of the limited number of comprehensive studies in the literature examining the adsorption of NOM by CNTs. In this study, 11 standard NOM samples from various sources were characterized, and their adsorption behaviors on four different CNTs were examined side-by-side using total organic carbon, fluorescence, UV-visible spectroscopy, and high-performance size-exclusion chromatography (HPSEC) analysis. Adsorption was influenced by the chemical properties of the NOM, including aromaticity, degree of oxidation, and carboxylic acidity. Fluorescence excitation-emission matrix (EEM) analysis showed preferential adsorption of decomposed and terrestrial-derived NOM compared to freshly produced and microbial-derived NOM. HPSEC analysis revealed preferential adsorption of fractions in the molecular weight range of 0.5-2 kDa for humic acids but in the molecular weight range of 1-3 kDa for all fulvic acids and reverse-osmosis isolates. However, the smallest characterized fraction (MW < 0.4 kDa) in all samples did not adsorb on the CNTs.


Assuntos
Substâncias Húmicas , Nanotubos de Carbono , Adsorção , Cromatografia em Gel , Compostos Orgânicos
6.
Water Sci Technol ; 76(11-12): 3101-3113, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29210696

RESUMO

The effect of inorganic suspended solids (ISS) on nitrification in freshwater samples has been described inconsistently and remains unclear. This study therefore investigated the effects of the chemical characteristics and concentration of ISS on the nitrification rate by focusing on Nitrosomonas europaea and Nitrobacter winogradskyi as the two most dominant nitrification species in freshwater. Batch-wise experiments were conducted using three chemically well-characterized ISS (i.e. the clay minerals montmorillonite, sericite, and kaolinite in the concentration range 0-1,000 mg L-1). The results show that the ammonium oxidation rate constant (kNH4) was significantly affected by the ISS type, whereas changes in the ISS concentration had an insignificant effect on kNH4, except for kaolinite. The highest kNH4 was observed in samples containing sericite (kNH4, 0.067 L mg-1 day-1), followed by samples containing montmorillonite (kNH4, 0.044 L mg-1 day-1). The ammonium oxidation rate was low in the control and kaolinite samples. Nitrite oxidation was enhanced in the presence of all types of ISS. The rate constants of ISS-mediated nitrite oxidation (kNO2, 0.13-0.21 L mg-1 day-1) were not significantly different among the three types of ISS, but kNO2 was significantly affected by ISS concentration. Overall, our study indicated various effects of the ISS type and concentration on nitrification and, in particular, a notable positive effect of sericite.


Assuntos
Água Doce/química , Nitritos/química , Poluentes Químicos da Água/química , Silicatos de Alumínio , Bentonita , Argila , Caulim , Nitrificação , Nitrobacter/metabolismo , Nitrosomonas europaea/metabolismo , Oxirredução , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/metabolismo
7.
Water Sci Technol ; 72(8): 1327-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26465302

RESUMO

We investigated the effect of salinity on the removal of organics and ammonium from agricultural drainage wastewater (ADW) using moving bed biofilm reactors (MBBRs). Under the typical salinity level of ADW (total dissolved solids (TDS) concentration up to 2.5 g·L(-1)), microorganisms were acclimated for 40 days on plastic carriers and a stable slime layer of attached biofilm was formed. Next, six batch mode MBBRs were set up and run under different salinity conditions (0.2-20 g-TDS·L(-1)). The removal efficiency of chemical oxygen demand (COD) and ammonium-nitrogen (NH4-N) in 6 hours decreased from 98 and 68% to 64 and 21% with increasing salt concentrations from 2.5 to 20 g-TDS·L(-1), respectively. In addition, at decreasing salt levels of 0.2 g-TDS·L(-1), both COD removal and nitrification were slightly lowered. Kinetic analysis indicated that the first-order reaction rate constant (k1) and specific substrate utilization rate (U) with respect to the COD removal remained relatively constant (10.9-11.0 d(-1) and 13.1-16.1 g-COD-removed.g-biomass(-1)·d(-1), respectively) at the salinity range of 2.5-5.0 g-TDS·L(-1). In this study, the treated wastewater met the standard criteria of organic concentration for reuse in agricultural purposes, and the system performance remained relatively constant at the salinity range of typical ADW.


Assuntos
Compostos de Amônio/isolamento & purificação , Reatores Biológicos , Compostos Orgânicos/isolamento & purificação , Salinidade , Purificação da Água/métodos , Agricultura , Biofilmes , Análise da Demanda Biológica de Oxigênio , Biomassa , Cinética , Nitrificação , Nitrogênio , Cloreto de Sódio , Águas Residuárias
8.
Environ Sci Technol ; 48(8): 4414-24, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24635730

RESUMO

Thermodynamic and kinetic parameters for ferric iron (Fe[III]) complexation by well-characterized humic substances (HS) from various origins were determined by a competitive ligand method with 5-sulfosalicylic acid at circumneutral pH (6.0-8.0) and an ionic strength of ∼0.06 M. The measured Fe binding properties including conditional stability constants and complexation capacities ranged over more than 2 orders of magnitude, depending on the origin and the particular operationally defined fraction of HS examined. Statistical comparison of the complexation parameters to a range of chemical properties of the HS indicated a strong positive correlation between Fe(III) complexation capacity and aromatic carbon content in the HS at all pHs examined. In contrast, the complexation capacity was determined to be up to a few orders of magnitude smaller than the concentration of carboxylic and phenolic groups present. Therefore, specific functional groups including those resident in the proximity of aromatic structures within the HS are likely preferable for Fe(III) coordination under the conditions examined. Overall, our results suggest that the concentration of dissolved Fe(III) complexes in natural waters is substantially influenced by variation in HS characteristics in addition to other well-known factors such as HS concentration and nature and concentration of competing cations present.


Assuntos
Compostos Férricos/química , Substâncias Húmicas , Ferro/química , Meio Ambiente , Concentração de Íons de Hidrogênio , Cinética
9.
Sci Total Environ ; 927: 172236, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582123

RESUMO

Pindolol (PIN) is a commonly used ß-blocker drug and has been frequently detected in various natural waters. Comprehensive understanding of its environmental photochemical transformation is necessary to assess its environmental risk. In this study, the photodegradation kinetics and mechanisms of PIN in both freshwater and coastal water were investigated for the first time. The photodegradation experiments were carried out by steady-state photochemical experiment under simulated sunlight irradiation. The results showed that the photodegradation rate of PIN in the freshwater of the Pearl River estuary was significantly faster than that in its downstream coastal water. In river water, PIN can undergo both direct photolysis and indirect photolysis induced by riverine dissolved organic matter (DOM) mainly through excited triplet-state of DOM and singlet oxygen, while direct photolysis dominated its degradation in coastal water. The promotion effect was found to be much greater for Suwannee River Natural Organic Matter (SRNOM) than that of the sampled riverine DOM, due to its high steady-state concentrations of reactive species. Interestingly, coastal DOM in northern and southern China were found to have similar promotion effects on PIN photodegradation for the first time, but both less than that of riverine DOM. A total of seven degradation products of PIN resulting from hydroxylation, hydrogen abstraction and cleavage of ether bond were identified. Biological toxicity of one products were found to be higher than that of PIN. These results are of significance for knowing the persistence and ecological risk of PIN in natural waters.

10.
Water Res ; 253: 121260, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354661

RESUMO

The excited triplet-state of dissolved organic matter (3DOM*) is a major reactive intermediate in sunlit waters. Its quantum yield is important in understanding the fate of organic micropollutants. The degradation efficiency of its chemical probe, 2,4,6-trimeythlphenol (fTMP), is generally used as a proxy of the quantum yield. However, fTMP has been described and modelled only for freshwater systems. Therefore, this study quantified fTMP in inland freshwater and coastal seawater sampled in Japan by conducting steady-state photochemical experiments. Optical properties of water were then used to model fTMP. Results indicated that the inland freshwater DOM originated mainly from terrestrial sources, while the coastal seawater DOM were microbial-dominated. On average, inland freshwater exhibited lower fTMP (61.2 M-1) than coastal seawater (79.7 M-1) and the coastal seawater exhibited significant variations in the proportion of high-energy 3DOM* (> 250 kJ/mol). In addition, E2:E3 (ratio of absorbance at 254 to 365 nm) was positively correlated with fTMP of inland freshwater, coastal seawater, and the overall dataset. Catchment conditions such as forest coverage also influenced the production of 3DOM* and high-energy 3DOM* in inland freshwater. Furthermore, the developed models estimated fTMP based on the optical properties of both freshwater and seawater, providing valuable insights about 3DOM* photochemistry in the aquatic environment.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Químicos da Água , Água Doce/química , Água do Mar/química , Água/química , Poluentes Químicos da Água/química
11.
Front Public Health ; 11: 1196539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670827

RESUMO

Introduction: In recent years, the widespread shift from on-site to remote work has led to a decline in employees' mental health. Consequently, this transition to remote work poses several challenges for both employees and employers. To address these challenges, there is an urgent need for techniques to detect declining mental health in employees' daily lives. Emotion-based health assessment, which examines emotional diversity (emodiversity) experienced in daily life, is a possible solution. However, the feasibility of emodiversity remains unclear, especially from the perspectives of its applicability to remote workers and countries other than Europe and the United States. This study investigated the association between subjective mental health decline and emotional factors, such as emodiversity, as well as physical conditions, in remote workers in Japan. Method: To explore this association, we conducted a consecutive 14-day prospective observational experiment on 18 Japanese remote workers. This experiment comprised pre-and post-questionnaire surveys, physiological sensing, daytime emotion self-reports, and subjective health reports at end-of-day. In daytime emotion self-reports, we introduced smartphone-based experience sampling (also known as ecological momentary assessment), which is suitable for collecting context-dependent self-reports precisely in a recall bias-less manner. For 17 eligible participants (mean ± SD, 39.1 ± 9.1 years), we evaluated whether and how the psycho-physical characteristics, including emodiversity, changed on subjective mental health-declined experimental days after analyzing descriptive statistics. Results: Approximately half of the experimental days (46.3 ± 18.9%) were conducted under remote work conditions. Our analysis showed that physical and emotional indices significantly decreased on mental health-declined days. Especially on high anxiety and depressive days, we found that emodiversity indicators significantly decreased (global emodiversity on anxiety conditions, 0.409 ± 0.173 vs. 0.366 ± 0.143, p = 0.041), and positive emotional experiences were significantly suppressed (61.5 ± 7.7 vs. 55.5 ± 6.4, p < 0.001). Discussion: Our results indicated that the concept of emodiversity can be applicable even to Japanese remote workers, whose cultural background differs from that of individuals in Europe and the United States. Emodiversity showed significant associations with emotion dysregulation-related mental health deterioration, suggesting the potential of emodiversity as useful indicators in managing such mental health deterioration among remote workers.


Assuntos
Disfunção Cognitiva , Emoções , Humanos , Ansiedade , Transtornos de Ansiedade , Saúde Mental
12.
Water Res ; 244: 120456, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579568

RESUMO

Man-made reservoirs are important for human daily lives and offer different functions, however they are contaminated due to anthropogenic activities. Dissolved organic matter (DOM) from each reservoir is unique in composition, which further determines its photo-reactivity. Thus, this study aimed to investigate the photo-reactivity of reservoir DOM in terms of the quantum yield for photo-production of singlet oxygen (Ф1O2). We sampled surface water of 50 reservoirs in Japan and determined their Ф1O2 using simulated sunlight together with bulk water analysis. Their Ф1O2 ranged from 1.46 × 10-2 to 6.21 × 10-2 (mean, 2.55 × 10-2), which was identical to those of lakes and rivers reported in the literature, but lower than those of wetland water and wastewater. High-energy triplet-state of DOM accounted for 59.4% of the 1O2 production in the reservoir water on average. Among the bulk water properties, the spectral slope of wavelength from 350 to 400 nm (S350-400) was statistically detected as the most important predictor for Ф1O2. Furthermore, the multiple linear regression model employed S350-400 and the biological index as predictors with no intercorrelations and reasonable accuracy (r2 = 0.86), while the random forest model showed a better accuracy (r2 = 0.90). Overall, these major findings are beneficial for understanding the photo-reactivity of reservoir waters.


Assuntos
Oxigênio Singlete , Água , Humanos , Rios , Águas Residuárias , Luz Solar , Fotólise
13.
Water Res ; 231: 118236, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682233

RESUMO

Photochemical reactions widely occur in the aquatic environment and play fundamental roles in aquatic ecosystems. In particular, solar-induced photodegradation is efficient for many organic micropollutants (OMPs), especially those that cannot undergo hydrolysis or biodegradation, and thus can mitigate chemical pollution. Recent reports indicate that photodegradation may play a more important role than biodegradation in many OMP transformations in the aquatic environment. Photodegradation can be influenced by the water matrix such as pH, inorganic ions, and dissolved organic matter (DOM). The effect of the water matrix such as DOM on photodegradation is complex, and new insights concerning the disparate effects of DOM have recently been reported. In addition, the photodegradation process is also influenced by physical factors such as latitude, water depth, and temporal variations in sunlight as these factors determine the light conditions. However, it remains challenging to gain an overview of the importance of photodegradation in the aquatic environment because the reactions involved are diverse and complex. Therefore, this review provides a concise summary of the importance of photodegradation and the major processes related to the photodegradation of OMPs, with particular attention given to recent progress on the major reactions of DOM. In addition, major knowledge gaps in this field of environmental photochemistry are highlighted.


Assuntos
Ecossistema , Poluentes Químicos da Água , Fotólise , Água , Luz Solar
14.
Sci Total Environ ; 861: 160696, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36481149

RESUMO

Dissolved silicon (DSi) is essential for aquatic primary production and its limitation relative to nitrogen (N) and phosphorus (P) facilitates cyanobacterial dominance. However, the effects of DSi on phytoplankton growth and community structure have yet to be fully determined in tropical lakes, particularly in relation to N and P. Therefore, this study investigated the role of DSi in Tonlé Sap Lake, Cambodia, a tropical floodplain system well known for its flood-pulse characteristics and high productivity. To that end, seasonal water sampling and in situ water quality measurements were performed around the floating villages of Chhnok Tru region. The concentration of DSi was significantly higher in the dry season than in the wet season at 16.3-22.1 versus 7.2-14.0 mg/L, respectively; however, both sets of measurements were comparable with lakes in other parts of the world. Meanwhile, the average molar ratio of TN:TP:DSi was 69:1:33 in the dry season and 39:1:24 in the wet season, which compared with the Redfield ratio of 16:1:16, suggested limitation of TP and DSi in both seasons. In addition, phytoplankton biomass in terms of chlorophyll-a was found to be a collective function of DSi, TN:TP, dissolved oxygen, and water temperature in both seasons. Taken together, these results suggest that DSi is affected by the annual hydrological cycle in the Tonlé Sap Lake flood-pulse ecosystem, serving as a secondary limiting nutrient of primary production during both the dry and wet seasons.


Assuntos
Cianobactérias , Ecossistema , Lagos/química , Silício , Eutrofização , Fitoplâncton , Fósforo/análise , Estações do Ano , Nitrogênio/análise , China
15.
Environ Sci (Camb) ; 8(7): 1521-1534, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37534127

RESUMO

Bacterial regrowth after water/wastewater disinfection poses severe risks to public health. However, regrowth studies under realistic water conditions that might critically affect bacterial regrowth are scarce. This study aimed to assess for the first time the regrowth of Escherichia coli (E. coli) in terms of its viability and culturability in environmental waters after chlorine disinfection, which is the most widely used disinfection method. Post-chlorination regrowth tests were conducted in 1) standard 0.85% NaCl solution, 2) river water receiving domestic wastewater effluents, and 3) river water that is fully recharged by domestic wastewater effluents. The multiplex detection of plate count and fluorescence-based viability test was adopted to quantify the culturable and viable E. coli to monitor the regrowth process. The results confirmed that chlorine treatment (0.2, 0.5 and 1.0 mg L-1 initial free chlorine) induced more than 99.95% of E. coli to enter a viable but non-culturable (VBNC) state and the reactivation of VBNC E. coli is presumably the major process of the regrowth. A second-order regrowth model well described the temporal shift of the survival ratio of culturable E. coli after the chlorination (R2: 0.73-1.00). The model application also revealed that the increase in initial chlorine concentration and chlorine dose limited the maximum regrowth rate and the maximum survival ratio, and the regrowth rate and percentage also changed with the water type. This study gives a better understanding of the potential regrowth after chlorine disinfection and highlights the need for investigating the detailed relation of the regrowth to environmental conditions such as major components of water matrices.

16.
Sci Rep ; 12(1): 12946, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902709

RESUMO

Surface code is a promising candidate for the quantum error corrections needed for fault-tolerant quantum computations because it can operate on a two-dimensional grid of qubits. However, the gates and control lines become dense as more and more qubits are integrated, making their design and control difficult. This problem can be alleviated if the surface code can operate on sparse qubit arrays. Here, we give an solution for an array in which qubits are placed on edges as well as on nodes of a two-dimensional grid. The qubits on the edges are divided into two groups: those in one group act as the deputies of data qubits; the others act as deputies of the syndrome qubits. Syndrome outputs are obtained by multiplying the measured values of the syndrome and edge qubits. The procedure for the quantum part is the same as that of the ordinary surface code, making the surface code applicable to sparse qubit arrays.

17.
Env Sci Adv ; 1(1): 30-36, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36778842

RESUMO

Monitoring bacteria is essential for ensuring microbial safety of water sources, including river water and treated wastewater. The plate count method is common for monitoring bacterial abundance, although it cannot detect all live bacteria such as viable but non-culturable bacteria, causing underestimation of microbial risks. Live/Dead BacLight kit, involving fluorochromes SYTO 9 and propidium iodide (PI), provides an alternative to assess bacterial viability using flow cytometry or microscopy. However, its application is limited due to the high cost of flow cytometry and the inapplicability of microscopy to most environmental waters. Thus, this study introduces the combination of BacLight kit and fluorescence spectroscopy for quantifying live bacteria in river water and treated wastewater. Mixtures of live and dead Escherichia coli (E. coli) with various ratios and total cell concentrations were stained with SYTO 9 and PI and measured by fluorescence spectroscopy. The fluorescence emission peak area of SYTO 9 in the range of 500-510 nm at the excitation wavelength of 470 nm correlates linearly with the viable cell counts (R 2 > 0.99, p < 0.0001) with only slight variations in the complex water matrix. The tested method can quantify the live E. coli from 3.67 × 104 to 2.70 × 107 cells per mL. This method is simple, sensitive and reliable for quantifying live bacteria in environmental water, which can be later integrated into real-time monitoring systems.

18.
Chemosphere ; 287(Pt 3): 132318, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826949

RESUMO

Acebutolol (ACE) has been widely used for the treatment of cardiovascular disorders, and its photochemical fate in natural waters is a matter of concern due to its ubiquitous occurrence and its toxicity to aquatic organisms. In this study, the photodegradation of ACE in river water and synthetic waters were investigated under simulated sunlight irradiation. The results demonstrated that ACE photodegradation rate in river water was 3.2 times higher than that in pure water. Then the influences of HCO3-, NO3- and DOM on ACE photolysis were investigated under their concentrations similar with the ones in river water. ACE photodegradation was significantly enhanced in the presence of HCO3- alone, and the scavenging experiments and the electron paramagnetic resonance experiments together proved that HCO3- could be oxidized by triplet-excited state of ACE to generate CO3•-, which subsequently played a key role in ACE degradation. The presence of both NO3- and DOM also increased the ACE photodegradation rates, and •OH and 3DOM* were found to be involved in the degradation. In addition, when DOM was added to a solution with HCO3-, the enhancement effect of HCO3- on ACE photodegradation was weakened due to the scavenging of CO3•- by DOM combined with the light screening effect of DOM.


Assuntos
Radical Hidroxila , Poluentes Químicos da Água , Acebutolol , Carbonatos , Fotólise
19.
Chemosphere ; 297: 134106, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35227754

RESUMO

Antihypertensive propranolol (PRO) is frequently detected in surface waters and has adverse effects on aquatic organisms. In this study, its photochemical fate in surface water with the aspect of kinetics, products and toxicity were investigated employing steady-state photochemistry experiments and ecotoxicity tests. The results showed that photodegradation of PRO was enhanced in river water than that in phosphate buffer where dissolved organic matter (DOM), NO3-, and HCO3- played important roles. DOM accelerated the photodegradation mainly through generation of excited triplet-state DOM while NO3- played dual roles in the photodegradation. The reaction between excited triplet-state PRO and HCO3- can generate carbonate radical (CO3·-) to promote the photodegradation. The second-order reaction rate constant between PRO and CO3·- was determined to be (3.4 ± 0.8) × 108 M-1 s-1. Eight photodegradation products were identified in the studied river water sample. Finally, the toxicity evaluated by Vibrio fischeri increased after photodegradation and three photodegradation products were responsible for the increasing toxicity, which was concluded from the significant correlation between toxicity parameters and quantity of the photodegradation products.


Assuntos
Propranolol , Poluentes Químicos da Água , Carbonatos , Matéria Orgânica Dissolvida , Fotólise , Propranolol/toxicidade , Água , Poluentes Químicos da Água/análise
20.
J Phys Chem A ; 115(21): 5371-9, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21561126

RESUMO

The kinetics of ligand exchange between ferric citrate and desferrioxamine B (DFB) was investigated at pH 8.0 and high citrate/Fe molar ratios (500-5000) with particular attention given to understanding the precise mechanism of ligand exchange. Ferric citrate complexes present in a test solution and therefore involved in the reaction with the incoming ligand (DFB) were initially examined by evaluating ferric citrate speciation on the basis of published thermodynamic constants. The speciation analysis indicated that mononuclear (mono- and dicitrate) ferric complexes are the major species responsible for the ligand exchange with DFB under the conditions examined in the present work. Given the tendency of DFB to adjunctively associate with the ferric citrate complexes, we propose a kinetic model containing the following three mechanisms: (i) direct association of DFB to the ferric dicitrate complex prior to any dissociation of citrate molecules from the Fe center, (ii) adjunctive association of DFB toward ferric monocitrate complex following dissociation of one molecule of citrate from the parent complex, and (iii) complexation of hydrated Fe by DFB after sequential dissociation of two molecules of citrate from the Fe center. Overall rates for the ligand exchange were determined by spectrophotometrically monitoring the formation of ferrioxamine B. Further analysis in quantifying the rate of each mechanism by use of published and determined rate constants of relevant elemental reactions suggested that the first and second mechanisms were significant under our experimental conditions where [Cit] ≫ [DFB] with the relative importance of these two pathways depending on citrate concentration.


Assuntos
Desferroxamina/química , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Estrutura Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA