Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nano Lett ; 22(20): 8266-8273, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36251485

RESUMO

It is still challenging to achieve high-efficiency pure-red (620-650 nm wavelength) perovskite light-emitting diodes (PeLEDs). Herein, we report pure-red PeLEDs with Commission Internationale de l'Eclairage coordinates (0.703, 0.297) meeting the Rec. 2020, an external quantum efficiency of 20.8%, and a luminance of 3775 cd/m2. This design is based on the strong quantum confinement CsPbI3 quantum dots (QDs) capped by composite ligands of 3-phenyl-1-propylamine and tetrabutylammonium iodide. This strategy stabilized the structure of the strong-confined QDs and reduced the influence of the electric field-induced Stark effect on the PeLEDs. Furthermore, the exciton binding energy of the QDs was decreased by the composited ligands to suppress Auger recombination within the devices. Additionally, the valence-band maximum of the QDs was lifted to match the hole-transport layer, thus balancing charge injection in the PeLEDs. Our device also demonstrated a stable electroluminescence spectrum and a lifetime of 5.6 times longer than the control device.

2.
Small ; 16(50): e2005246, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230955

RESUMO

Cesium lead iodide (CsPbI3 ) perovskite has gained great attention due to its potential thermal stability and appropriate bandgap (≈1.73 eV) for tandem cells. However, the moisture-induced thermodynamically unstable phase and large open-circuit voltage (VOC ) deficit and also the low efficiency seriously limit its further development. Herein, long chain phenylethylammonium (PEA) is utilized into CsPbI3 perovskite to stabilize the orthorhombic black perovskite phase (γ-CsPbI3 ) under ambient condition. Furthermore, the moderate lead acetate (Pb(OAc)2 ) is controlled to combine with phenylethylammonium iodide to form the 2D perovskite, which can dramatically suppress the charge recombination in CsPbI3 . Unprecedentedly, the resulted CsPbI3 solar cells achieve a 17% power conversion efficiency with a record VOC of 1.33 V, the VOC deficit is only 0.38 V, which is close to those in organic-inorganic perovskite solar cells (PSCs). Meanwhile, the PEA modified device maintains 94% of its initial efficiency after exceeding 2000 h of storage in the low-humidity controlled environment without encapsulation.

3.
Small ; : e1801154, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29939472

RESUMO

The highest power conversion efficiency of perovskite solar cells is beyond 22%. Charge transport layers are found to be critical for device performance and stability. A traditional electron transport layer (ETL), such as TiO2 , is not very efficient for charge extraction at the interface, especially in planar structure. In addition, the devices using TiO2 suffer from serious degradation under ultraviolet illumination. SnO2 owns a better band alignment with the perovskite absorption layer and high electron mobility, which is helpful for electron extraction. In this Review, recent progresses in efficient and stable perovskite solar cells using SnO2 as ETL are summarized.

4.
Nature ; 544(7649): 155-156, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28406215
5.
Small ; 13(18)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28266795

RESUMO

Atomically thin hexagonal boron nitride (h-BN) is gaining significant attention for many applications such as a dielectric layer or substrate for graphene-based devices. For these applications, synthesis of high-quality and large-area h-BN layers with few defects is strongly desirable. In this work, the aligned growth of millimeter-size single-crystal h-BN domains on epitaxial Ni (111)/sapphire substrates by ion beam sputtering deposition is demonstrated. Under the optimized growth conditions, single-crystal h-BN domains up to 0.6 mm in edge length are obtained, the largest reported to date. The formation of large-size h-BN domains results mainly from the reduced Ni-grain boundaries and the improved crystallinity of Ni film. Furthermore, the h-BN domains show well-aligned orientation and excellent dielectric properties. In addition, the sapphire substrates can be repeatedly used with almost no limit. This work provides an effective approach for synthesizing large-scale high-quality h-BN layers for electronic applications.

6.
Acc Chem Res ; 49(1): 155-65, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26693663

RESUMO

Inorganic-organic hybrid perovskite solar cells research could be traced back to 2009, and initially showed 3.8% efficiency. After 6 years of efforts, the efficiency has been pushed to 20.1%. The pace of development was much faster than that of any type of solar cell technology. In addition to high efficiency, the device fabrication is a low-cost solution process. Due to these advantages, a large number of scientists have been immersed into this promising area. In the past 6 years, much of the research on perovskite solar cells has been focused on planar and mesoporous device structures employing an n-type TiO2 layer as the bottom electron transport layer. These architectures have achieved champion device efficiencies. However, they still possess unwanted features. Mesoporous structures require a high temperature (>450 °C) sintering process for the TiO2 scaffold, which will increase the cost and also not be compatible with flexible substrates. While the planar structures based on TiO2 (regular structure) usually suffer from a large degree of J-V hysteresis. Recently, another emerging structure, referred to as an "inverted" planar device structure (i.e., p-i-n), uses p-type and n-type materials as bottom and top charge transport layers, respectively. This structure derived from organic solar cells, and the charge transport layers used in organic photovoltaics were successfully transferred into perovskite solar cells. The p-i-n structure of perovskite solar cells has shown efficiencies as high as 18%, lower temperature processing, flexibility, and, furthermore, negligible J-V hysteresis effects. In this Account, we will provide a comprehensive comparison of the mesoporous and planar structures, and also the regular and inverted of planar structures. Later, we will focus the discussion on the development of the inverted planar structure of perovskite solar cells, including film growth, band alignment, stability, and hysteresis. In the film growth part, several methods for obtaining high quality perovskite films are reviewed. In the interface engineering parts, the effect of hole transport layer on subsequent perovskite film growth and their interface band alignment, and also the effect of electron transport layers on charge transport and interface contact will be discussed. As concerns stability, the role of charge transport layers especially the top electron transport layer in the devices stability will be concluded. In the hysteresis part, possible reasons for hysteresis free in inverted planar structure are provided. At the end of this Account, future development and possible solutions to the remaining challenges facing the commercialization of perovskite solar cells are discussed.

7.
Nano Lett ; 15(1): 662-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25513830

RESUMO

We successfully demonstrated an integrated perovskite/bulk-heterojunction (BHJ) photovoltaic device for efficient light harvesting and energy conversion. Our device efficiently integrated two photovoltaic layers, namely a perovskite film and organic BHJ film, into the device. The device structure is ITO/TiO2/perovskite/BHJ/MoO3/Ag. A wide bandgap small molecule DOR3T-TBDT was used as donor in the BHJ film, and a power conversion efficiency (PCE) of 14.3% was achieved in the integrated device with a high short circuit current density (JSC) of 21.2 mA cm(-2). The higher JSC as compared to that of the traditional perovskite/HTL (hole transporting layer) device (19.3 mA cm(-2)) indicates that the BHJ film absorbs light and contributes to the current density of the device. Our result further suggests that the HTL in traditional perovskite solar cell, even with good light absorption capability, cannot contribute to the overall device photocurrent, unless this HTL becomes a BHJ layer (by adding electron transporting material like PC71BM).

8.
Nanotechnology ; 25(29): 295401, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24981571

RESUMO

Organic photovoltaics (OPVs) fabricated via solution processing are an attractive way to realize low cost solar energy harvesting. Bulk heterojunction (BHJ) devices are the most successful design, but their morphology is less controllable. In this manuscript, we describe a simple approach to realize 'ordered' BHJ morphology using two immiscible solvents with different boiling point and a quasi-bilayer approach. Tunable fine structures were demonstrated in poly(3-hexylthiophene) (P3HT) and [6,6]-Phenyl C61 butyric acid methyl ester (PCBM) model systems, and the devices with optimized fine structure showed a 33% efficiency enhancement compared to those with a planar bilayer structure.

9.
Sci Adv ; 10(18): eadn5683, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701203

RESUMO

Perovskite light-emitting diodes (PeLEDs) have attracted great attention in recent years; however, the halogen vacancy defects in perovskite notably hamper the development of high-efficiency devices. Previously, large-sized passivation agents have been usually used, while the effect of defect passivation is limited due to the weak bonding or the large space steric hindrance. Here, we predict that the ultrasmall-sized formate (Fa) and acetate (Ac) have more efficient passivation ability because of the stronger binding with the perovskite, as demonstrated by density functional theory calculation. We introduce ultrasmall-sized cesium salts (CsFa/CsAc) into buried interface, which can also diffuse into the bulk, resulting in both buried interface and bulk passivation. In addition, the improved perovskite growth has been found due to the enhanced hydrophily after introducing CsFa/CsAc as additive. According to these advantages, a pure-red PeLED with 24.2% efficiency at 639 nm has been achieved.

10.
Science ; 382(6677): 1399-1404, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37995210

RESUMO

The power conversion efficiency (PCE) of inverted perovskite solar cells (PSCs) is still lagging behind that of conventional PSCs, in part because of inefficient carrier transport and poor morphology of hole transport layers (HTLs). We optimized self-assembly of [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) onto nickel oxide (NiOx) nanoparticles as an HTL through treatment with hydrogen peroxide, which created a more uniform dispersion of nanoparticles with high conductivity attributed to the formation of Ni3+ as well as surface hydroxyl groups for bonding. A 25.2% certified PCE for a mask size of 0.074 square centimeters was obtained. This device maintained 85.4% of the initial PCE after 1000 hours of stabilized power output operation under 1 sun light irradiation at about 50°C and 85.1% of the initial PCE after 500 hours of accelerated aging at 85°C. We obtained a PCE of 21.0% for a minimodule with an aperture area of 14.65 square centimeters.

11.
J Am Chem Soc ; 134(24): 10071-9, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22640170

RESUMO

The tandem solar cell architecture is an effective way to harvest a broader part of the solar spectrum and make better use of the photonic energy than the single junction cell. Here, we present the design, synthesis, and characterization of a series of new low bandgap polymers specifically for tandem polymer solar cells. These polymers have a backbone based on the benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) units. Alkylthienyl and alkylphenyl moieties were incorporated onto the BDT unit to form BDTT and BDTP units, respectively; a furan moiety was incorporated onto the DPP unit in place of thiophene to form the FDPP unit. Low bandgap polymers (bandgap = 1.4-1.5 eV) were prepared using BDTT, BDTP, FDPP, and DPP units via Stille-coupling polymerization. These structural modifications lead to polymers with different optical, electrochemical, and electronic properties. Single junction solar cells were fabricated, and the polymer:PC(71)BM active layer morphology was optimized by adding 1,8-diiodooctane (DIO) as an additive. In the single-layer photovoltaic device, they showed power conversion efficiencies (PCEs) of 3-6%. When the polymers were applied in tandem solar cells, PCEs over 8% were reached, demonstrating their great potential for high efficiency tandem polymer solar cells.

12.
Adv Mater ; 34(36): e2204460, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35855612

RESUMO

Perovskite light-emitting diodes (PeLEDs) have received great attention in recent years due to their narrow emission bandwidth and tunable emission spectrum. Efficient red emission is one of most important parts for lighting and displays. Quasi-2D perovskites can deliver high emission efficiency due to the strong carrier confinement, while the external quantum efficiencies (EQE) of red quasi-2D PeLEDs are inefficient at present, which is due to the complex distribution of different n-value phases in quasi-2D perovskite films. In this work, the phase distribution of the quasi-2D perovskite is finely controlled by mixing two different large organic cations, which effectively reduces the amount of smaller n-index phases, meanwhile the passivation of lead and halide defects in perovskite films is realized. Accordingly, the PeLEDs show 25.8% EQE and 1300 cd m-2 maximum brightness at 680 nm, which exhibits the highest performance for red PeLEDs up to now.

13.
Science ; 377(6605): 531-534, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35901131

RESUMO

In halide perovskite solar cells the formation of secondary-phase excess lead iodide (PbI2) has some positive effects on power conversion efficiency (PCE) but can be detrimental to device stability and lead to large hysteresis effects in voltage sweeps. We converted PbI2 into an inactive (PbI2)2RbCl compound by RbCl doping, which effectively stabilizes the perovskite phase. We obtained a certified PCE of 25.6% for FAPbI3 (FA, formamidinium) perovskite solar cells on the basis of this strategy. Devices retained 96% of their original PCE values after 1000 hours of shelf storage and 80% after 500 hours of thermal stability testing at 85°C.

14.
Adv Mater ; 33(18): e2007169, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33797133

RESUMO

Perovskite light-emitting diodes (PeLEDs) are considered as particularly attractive candidates for high-quality lighting and displays, due to possessing the features of wide gamut and real color expression. However, most PeLEDs are made from polycrystalline perovskite films that contain a high concentration of defects, including point and extended imperfections. Reducing and mitigating non-radiative recombination defects in perovskite materials are still crucial prerequisites for achieving high performance in light-emitting applications. Here, ethoxylated trimethylolpropane triacrylate (ETPTA) is introduced as a functional additive dissolved in antisolvent to passivate surface and bulk defects during the spinning process. The ETPTA can effectively decrease the charge trapping states by passivation and/or suppression of defects. Eventually, the perovskite films that are sufficiently passivated by ETPTA make the devices achieve a maximum external quantum efficiency (EQE) of 22.49%. To our knowledge, these are the most efficient green PeLEDs up to now. In addition, a threefold increase in the T50 operational time of the devices was observed, compared to control samples. These findings provide a simple and effective strategy to make highly efficient perovskite polycrystalline films and their optoelectronics devices.

15.
Small Methods ; 5(8): e2100517, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34927872

RESUMO

Photodetectors with broadband response spectrum have attracted great interest in many application areas such as imaging, gas sensing, and night vision. Here, a high performance broadband photodetector is demonstrated with inorganic perovskite CsPbBr3 /GeSn heterojunction, detection range can be covered from 450 to 2200 nm. The responsivity of heterojunction device can achieve as high as 129 mA W-1 under illuminated light of 532 nm, which is 4.92 times larger than that of a GeSn based device. As the CsPbBr3 can also act as anti-reflective coating for infrared wavelength, the infrared band responsivity at wavelength of 2200 nm can also be raised by 1.42 times. In addition, the device with all inorganic components is showed good stability, while keeping in the dry environment, the device can sustain its 90% original after 550 h storage. These results show the inorganic perovskite/GeSn heterojunction device is of great potential in broadband photodetection with high responsivity.

16.
Front Optoelectron ; 13(3): 265-271, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36641573

RESUMO

Cesium-based inorganic perovskite solar cells (PSCs) are paid more attention because of their potential thermal stability. However, prevalent salt-doped 2,2',7,7'-tetrakis(N,N-dipmethoxyphenylamine)9,9'-spirobifluorene (Spiro-OMeTAD) as hole-transport materials (HTMs) for a high-efficiency inorganic device has an unfortunate defective thermal stability. In this study, we apply poly (3-hexylthiophene-2,5-diyl) (P3HT) as the HTM and design all-inorganic PSCs with an indium tin oxide (ITO)/SnO2/LiF/CsPbI3-xBrx/P3HT/Au structure. As a result, the CsPbI3-xBrx PSCs achieve an excellent performance of 15.84%. The P3HT HTM-based device exhibits good photo-stability, maintaining ∼80% of their initial power conversion efficiency over 280 h under one Sun irradiation. In addition, they also show better thermal stability compared with the traditional HTM Spiro-OMeTAD.

17.
ACS Appl Mater Interfaces ; 12(24): 27361-27367, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32449615

RESUMO

Recently, the deep ultraviolet (DUV) photodetectors fabricated from two-dimensional (2D) hexagonal boron nitride (h-BN) layers have emerged as a hot research topic. However, the existing studies show that the h-BN-based photodetectors have relatively poor performance. In this work, C doping is utilized to modulate the properties of h-BN and improve the performance of the h-BN-based photodetectors. We synthesized the h-BN atomic layers with various C concentrations varying from 0 to 10.2 atom % by ion beam sputtering deposition through controlling the sputtering atmosphere. The h-BN phase remains stable when a small amount of C is incorporated into h-BN, whereas the introduction of a large amount of C impurities leads to the rapidly deteriorated crystallinity of h-BN. Furthermore, the DUV photodetectors based on C-doped h-BN layers were fabricated, and the h-BN-based photodetector with 7.5 atom % C exhibits the best performance with a responsivity of 9.2 mA·W-1, which is significantly higher than that of the intrinsic h-BN device. This work demonstrates that the C doping is a feasible and effective method for improving the performance of h-BN photodetectors.

18.
Nat Commun ; 11(1): 4165, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820166

RESUMO

Perovskite light-emitting diodes (PeLEDs) have showed significant progress in recent years; the external quantum efficiency (EQE) of electroluminescence in green and red regions has exceeded 20%, but the efficiency in blue lags far behind. Here, a large cation CH3CH2NH2+ is added in PEA2(CsPbBr3)2PbBr4 perovskite to decrease the Pb-Br orbit coupling and increase the bandgap for blue emission. X-ray diffraction and nuclear magnetic resonance results confirmed that the EA has successfully replaced Cs+ cations to form PEA2(Cs1-xEAxPbBr3)2PbBr4. This method modulates the photoluminescence from the green region (508 nm) into blue (466 nm), and over 70% photoluminescence quantum yield in blue is obtained. In addition, the emission spectra is stable under light and thermal stress. With configuration of PeLEDs with 60% EABr, as high as 12.1% EQE of sky-blue electroluminescence located at 488 nm has been demonstrated, which will pave the way for the full color display for the PeLEDs.

19.
J Phys Chem Lett ; 10(11): 2892-2897, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31090418

RESUMO

Quasi-two-dimensional (quasi-2D) perovskites are efficient luminescent materials due to their self-assembled quantum-well structure. We found that the organic cations have a significant effect on the structure and performance of quasi-2D perovskite-based light-emitting diodes (LEDs). Two classic organic cations, formamidinium (FA) and methylammonium (MA), were chosen for investigation. The MA-based quasi-2D perovskite has the largest band-gap n = 1 phase and a photoluminescence quantum yield (PLQY) as high as 85.3%, whereas this n = 1 phase is almost absent in the FA-based quasi-2D perovskite, which shows a moderate PLQY of 73.5%. However, the FA-based perovskite shows a much higher external quantum efficiency (15.4%) than the MA-based perovskite (0.93%) in LEDs. The lower electroluminescence efficiency of the MA-based perovskite could be ascribed to the poor hole injection. These results showed the importance of rational design of the quasi-2D perovskite for efficient LEDs.

20.
Adv Mater ; 31(49): e1905143, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31631443

RESUMO

Cesium-based inorganic perovskite solar cells (PSCs) are promising due to their potential for improving device stability. However, the power conversion efficiency of the inorganic PSCs is still low compared with the hybrid PSCs due to the large open-circuit voltage (VOC ) loss possibly caused by charge recombination. The use of an insulated shunt-blocking layer lithium fluoride on electron transport layer SnO2 for better energy level alignment with the conduction band minimum of the CsPbI3- x Brx and also for interface defect passivation is reported. In addition, by incorporating lead chloride in CsPbI3- x Brx precursor, the perovskite film crystallinity is significantly enhanced and the charge recombination in perovksite is suppressed. As a result, optimized CsPbI3- x Brx PSCs with a band gap of 1.77 eV exhibit excellent performance with the best VOC as high as 1.25 V and an efficiency of 18.64%. Meanwhile, a high photostability with a less than 6% efficiency drop is achieved for CsPbI3- x Brx PSCs under continuous 1 sun equivalent illumination over 1000 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA