Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 40(33): 17348-17357, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39129509

RESUMO

The growth of industry has resulted in increased global air pollution, necessitating the urgent development of highly sensitive gas detectors. In this work, the adsorption of the Janus ZrSSe monolayer for CO, CO2, NH3, NO, NO2, and O2 was studied by first-principles calculations. First, the stability of the ZrSSe monolayer is confirmed through calculations of cohesive energy and AIMD simulations. Furthermore, the calculations indicate that the Se layer exhibits higher selectivity and sensitivity toward gas molecules compared to the S layer. Specifically, among the gases adsorbed on the Se layer, NO has the shortest adsorption distance (1.804 Å), the lowest adsorption energy (-0.424 eV), and the greatest electron transfer (0.098 e). Additionally, density of states analysis reveals that adsorption of NO, NO2, and O2 on the Janus ZrSSe monolayer can induce a transition from a nonmagnetic to a magnetic state. The adsorption of NO not only alters the magnetic state but also induces a transition from a semiconductor to metal, which is highly advantageous for gas sensing applications. There results suggest that the Janus ZrSSe monolayer has the potential to serve as a highly sensitive detector for NO gas.

2.
Langmuir ; 39(50): 18631-18643, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38064293

RESUMO

The rapid industrial development has contributed to worsening global pollution, necessitating the urgent development of highly sensitive, cost-effective, and portable gas sensors. In this work, the adsorption of CO, CO2, H2S, NH3, NO, NO2, O2, and SO2 gas molecules on pristine and Cu- and Al-decorated monolayer TiSe2 has been investigated based on first-principles calculations. First, the results of the phonon spectrum and ab initio molecular dynamics simulations demonstrated that TiSe2 is dynamically stable. In addition, compared to pristine TiSe2 (-0.029 to -0.154 eV), the adsorption energy of gas molecules (excluding CO2) significantly decreased after decorated with Cu or Al (-0.212 to -0.977 eV in Cu-decorated TiSe2, -0.438 to -2.896 eV in Al-decorated TiSe2). Among them, NH3 and NO2 have the lowest adsorption energies in Cu and Al-decorated TiSe2, respectively. Further research has shown that the decrease in adsorption energy of gas molecules is mainly due to orbital hybridization and charge transfer between decorated Cu and Al atoms and gas molecules. These findings suggest that TiSe2 decorated with Cu and Al can effectively improve its sensitivity to NH3 and NO2, respectively, making it promising in gas sensing applications.

3.
Dalton Trans ; 52(7): 2062-2072, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36692198

RESUMO

It is urgent to develop high-performance anode materials for lithium-ion batteries. In this work, a C3N/C3B p-n heterostructure was systematically investigated by first-principles calculations. The bonding strength of Li in C3N is relatively low (-0.53 eV), whereas the C3N/C3B heterostructure (-1.64 eV to -2.84 eV) can greatly improve the bonding strength without compromising the Li migration capability. The good bonding strength and Li mobility in the C3N/C3B heterostructure are mainly caused by the synergy effect and internal electric field of the p-n heterostructure. Moreover, the electronic structures indicate that the C3N/C3B heterostructure has good conductivity with a tiny bandgap of 0.09 eV. Compared to pristine C3N, the stiffness of the C3N/C3B heterostructure improved significantly (549.35 N m-1). Besides, the C3N/C3B heterostructure presents a high lithium-ion storage capacity (986.61 mA h g-1). The ultrahigh stiffness, good conductivities of electrons and ions, high bonding strength of Li, and high capacity show that the C3N/C3B heterostructure is a prospective anode material for lithium-ion batteries.

4.
Dalton Trans ; 51(46): 17902-17910, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36367056

RESUMO

In recent years, two-dimensional (2D) C-based materials have been intensively studied due to their excellent physicochemical properties. Meanwhile, extensive research has revealed that the electrical properties of layered materials can be tuned by changing the stacking pattern. However, the tuning of ion diffusion properties through stacking remains to be explored. In this work, bilayer C3B with different stackings as a lithium-ion battery anode material is systematically investigated by first-principles calculations. The calculated results show that bilayer C3B has better electronic properties (with a band gap of 0.44 eV to 0.54 eV) and enhanced bonding strength of Li (-2.82 to -3.27 eV) compared to monolayer C3B. Moreover, the intralayer migration barrier of Li can be regulated by stacking. Interestingly, the AB stacked configuration has the lowest migration barrier of 0.100 eV, which is significantly lower than those of other stacking configurations and monolayer C3B. Further studies revealed that the formation of fast ion diffusion channels in the AB stacked configuration is due to the combined effect of layer distance and in-plane charge transfer. These results offer a new strategy for the regulation of ion diffusion properties in 2D van der Waals materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA