Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Physiol Genomics ; 53(11): 456-472, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643091

RESUMO

Excessive long-term consumption of dietary carbohydrates, including glucose, sucrose, or fructose, has been shown to have significant impact on genome-wide gene expression, which likely results from changes in metabolic substrate flux. However, there has been no comprehensive study on the acute effects of individual sugars on the genome-wide gene expression that may reveal the genetic changes altering signaling pathways, subsequent metabolic processes, and ultimately physiological/pathological responses. Considering that gene expressions in response to acute carbohydrate ingestion might be different in nutrient sensitive and insensitive mammals, we conducted comparative studies of genome-wide gene expression by deep mRNA sequencing of the liver in nutrient sensitive C57BL/6J and nutrient insensitive BALB/cJ mice. Furthermore, to determine the temporal responses, we compared livers from mice in the fasted state and following ingestion of standard laboratory mouse chow supplemented with plain drinking water or water containing 20% glucose, sucrose, or fructose. Supplementation with these carbohydrates induced unique extents and temporal changes in gene expressions in a strain specific manner. Fructose and sucrose stimulated gene changes peaked at 3 h postprandial, whereas glucose effects peaked at 12 h and 6 h postprandial in C57BL/6J and BABL/cJ mice, respectively. Network analyses revealed that fructose changed genes were primarily involved in lipid metabolism and were more complex in C57BL/6J than in BALB/cJ mice. These data demonstrate that there are qualitative and antitative differences in the normal physiological responses of the liver between these two strains of mice and C57BL/6J is more sensitive to sugar intake than BALB/cJ.


Assuntos
Carboidratos da Dieta/administração & dosagem , Suplementos Nutricionais , Fígado/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Animais , Carboidratos da Dieta/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ingestão de Alimentos , Jejum , Frutose/administração & dosagem , Frutose/metabolismo , Glucose/administração & dosagem , Glucose/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Especificidade da Espécie , Sacarose/administração & dosagem , Sacarose/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
2.
J Biol Chem ; 295(15): 4809-4821, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32075912

RESUMO

The liver maintains metabolic homeostasis by integrating the regulation of nutrient status with both hormonal and neural signals. Many studies on hepatic signaling in response to nutrients have been conducted in mice. However, no in-depth study is currently available that has investigated genome-wide changes in gene expression during the normal physiological fasting-feeding cycle in nutrient-sensitive and -insensitive mice. Using two strains of mice, C57BL/6J and BALB/cJ, and deploying deep RNA-Seq complemented with quantitative RT-PCR, we found that feeding causes substantial and transient changes in gene expression in the livers of both mouse strains. The majority of significantly changed transcripts fell within the areas of biological regulation and cellular and metabolic processes. Among the metabolisms of three major types of macronutrients (i.e. carbohydrates, proteins, and lipids), feeding affected lipid metabolism the most. We also noted that the C57BL/6J and BALB/cJ mice significantly differed in gene expression and in changes in gene expression in response to feeding. In both fasted and fed states, both mouse strains shared common expression patterns for about 10,200 genes, and an additional 400-600 genes were differentially regulated in one strain but not the other. Among the shared genes, more lipogenic genes were induced upon feeding in BABL/cJ than in C57BL/6J mice. In contrast, in the population of differentially enriched genes, C57BL/6J mice expressed more genes involved in lipid metabolism than BALB/cJ mice. In summary, these results reveal that the two mouse strains used here exhibit several differences in feeding-induced hepatic responses in gene expression, especially in lipogenic genes.


Assuntos
Biomarcadores/metabolismo , Ingestão de Alimentos , Jejum , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Fígado/metabolismo , Animais , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade da Espécie
3.
J Biol Chem ; 294(23): 9076-9083, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31028171

RESUMO

The Mediator complex plays a critical role in the regulation of transcription by linking transcription factors to RNA polymerase II. By examining mouse livers, we have found that in the fasted state, the Mediator complex exists primarily as an approximately 1.2-MDa complex, consistent with the size of the large Mediator complex, whereas following feeding, it converts to an approximately 600-kDa complex, consistent with the size of the core Mediator complex. This dynamic change is due to the dissociation and degradation of the kinase module that includes the MED13, MED12, cyclin-dependent kinase 8 (CDK8), and cyclin C (CCNC) subunits. The dissociation and degradation of the kinase module are dependent upon nutrient activation of mTORC1 that is necessary for the induction of lipogenic gene expression because pharmacological or genetic inhibition of mTORC1 in the fed state restores the kinase module. The degradation but not dissociation of the kinase module depends upon the E3 ligase, SCFFBW7 In addition, genetically insulin-resistant and obese db/db mice in the fasted state displayed elevated lipogenic gene expression and loss of the kinase module that was reversed following mTORC1 inhibition. These data demonstrate that the assembly state of the Mediator complex undergoes physiologic regulation during normal cycles of fasting and feeding in the mouse liver. Furthermore, the assembly state of the Mediator complex is dysregulated in states of obesity and insulin resistance.


Assuntos
Resistência à Insulina , Complexo Mediador/metabolismo , Obesidade/patologia , Animais , Núcleo Celular/metabolismo , Ciclina C/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Fígado/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Nutrientes/administração & dosagem , Obesidade/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Ligases SKP Culina F-Box/deficiência , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
4.
J Biol Chem ; 285(50): 38801-10, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20876576

RESUMO

The environmental toxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin, dioxin) produces diverse toxic effects including a lethal wasting syndrome whose hallmark is suppressed hepatic gluconeogenesis. All TCDD toxicities require activation of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor. Whereas the mechanism for AHR induction of target genes is well understood, it is not known how AHR activation produces any TCDD toxicity. This report identifies for the first time an AHR target gene, TiPARP (TCDD-inducible poly(ADP-ribose) polymerase, PARP7) that can mediate a TCDD toxicity, i.e. suppression of hepatic gluconeogenesis. TCDD suppressed hepatic glucose production, expression of key gluconeogenic genes, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6Pase), and NAD(+) levels, and increased PARP activity and TiPARP expression. TCDD also increased acetylation and ubiquitin-dependent proteosomal degradation of the peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1α), a coactivator of PEPCK and G6Pase transcription. TiPARP overexpression reproduced TCDD effects on glucose output and NAD(+) levels whereas TiPARP silencing diminished them. TiPARP overexpression also increased PGC1α acetylation and decreased PGC1α levels. In contrast, silencing of cytochromes P450 (CYP) 1A, main AHR-induced genes, did not alter TCDD suppression of gluconeogenesis. The vitamin B3 constituent, nicotinamide (NAM), prevented TCDD suppression of glucose output, NAD(+), and gluconeogenic genes and stabilized PGC1α. The corrective effects of NAM could be attributed to increased NAD(+) levels and suppression of AHR target gene induction. The results reveal that TiPARP can mediate a TCDD effect, that the AHR is linked to PGC1α function and stability and that NAM has novel AHR antagonist activity.


Assuntos
Niacinamida/química , Poli(ADP-Ribose) Polimerases/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Embrião de Galinha , Citocromo P-450 CYP1A1/metabolismo , Inativação Gênica , Glucose/metabolismo , Glicogênio/química , Hepatócitos/metabolismo , Fígado/metabolismo , NAD/química , Dibenzodioxinas Policloradas/farmacologia , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo
5.
Org Biomol Chem ; 9(4): 987-93, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21184005

RESUMO

The ability to probe for catalytic activities of enzymes and to detect their abundance in complex biochemical contexts has traditionally relied on a combination of kinetic assays and techniques such as western blots that use expensive reagents such as antibodies. The ability to simultaneously detect activity and isolate a protein catalyst from a mixture is even more difficult and currently impossible in most cases. In this manuscript we describe a chemical approach that achieves this goal for a unique family of enzymes called sirtuins using novel chemical tools, enabling rapid detection of activity and isolation of these protein catalysts. Sirtuin deacetylases are implicated in the regulation of many physiological functions including energy metabolism, DNA-damage response, and cellular stress resistance. We synthesized an aminooxy-derivatized NAD(+) and a pan-sirtuin inhibitor that reacts on sirtuin active sites to form a chemically stable complex that can subsequently be crosslinked to an aldehyde-substituted biotin. Subsequent retrieval of the biotinylated sirtuin complexes on streptavidin beads followed by gel electrophoresis enabled simultaneous detection of active sirtuins, isolation and molecular weight determination. We show that these tools are cross reactive against a variety of human sirtuin isoforms including SIRT1, SIRT2, SIRT3, SIRT5, SIRT6 and can react with microbial derived sirtuins as well. Finally, we demonstrate the ability to simultaneously detect multiple sirtuin isoforms in reaction mixtures with this methodology, establishing proof of concept tools for chemical studies of sirtuins in complex biological samples.


Assuntos
Sirtuínas/isolamento & purificação , Acetilação , Catálise , Humanos , Estrutura Molecular , Sirtuínas/antagonistas & inibidores
6.
Mol Metab ; 48: 101227, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812059

RESUMO

OBJECTIVE: Liver glycogen levels are dynamic and highly regulated by nutrient availability as the levels decrease during fasting and are restored during the feeding cycle. However, feeding in the presence of fructose in water suppresses glycogen accumulation in the liver by upregulating the expression of the glucose-6-phosphatase catalytic subunit (G6pc) gene, although the exact mechanism is unknown. We generated liver-specific knockout MED13 mice that lacked the transcriptional Mediator complex kinase module to examine its effect on the transcriptional activation of inducible target gene expression, such as the ChREBP- and FOXO1-dependent control of the G6pc gene promoter. METHODS: The relative changes in liver expression of lipogenic and gluconeogenic genes as well as glycogen levels were examined in response to feeding standard low-fat laboratory chow supplemented with water or water containing sucrose or fructose in control (Med13fl/fl) and liver-specific MED13 knockout (MED13-LKO) mice. RESULTS: Although MED13 deficiency had no significant effect on constitutive gene expression, all the dietary inducible gene transcripts were significantly reduced despite the unchanged insulin sensitivity in the MED13-LKO mice compared to that in the control mice. G6pc gene transcription displayed the most significant difference between the Med13 fl/fl and MED13-LKO mice, particularly when fed fructose. Following fasting that depleted liver glycogen, feeding induced the restoration of glycogen levels except in the presence of fructose. MED13 deficiency rescued the glycogen accumulation defect in the presence of fructose. This resulted from the suppression of G6pc expression and thus G6PC enzymatic activity. Among two transcriptional factors that regulate G6pc gene expression, FOXO1 binding to the G6pc promoter was not affected, whereas ChREBP binding was dramatically reduced in MED13-LKO hepatocytes. In addition, there was a marked suppression of FOXO1 and ChREBP-ß transcriptional activities in MED13-LKO hepatocytes. CONCLUSIONS: Taken together, our data suggest that the kinase module of the Mediator complex is necessary for the transcriptional activation of metabolic genes such as G6pc and has an important role in regulating glycogen levels in the liver through altering transcription factor binding and activity at the G6pc promoter.


Assuntos
Domínio Catalítico/genética , Frutose/metabolismo , Glucose-6-Fosfatase/química , Glucose-6-Fosfatase/metabolismo , Glicogênio Hepático/biossíntese , Fígado/metabolismo , Complexo Mediador/metabolismo , Transdução de Sinais/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Ativação Enzimática/genética , Jejum , Frutose/farmacologia , Expressão Gênica , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Glucose-6-Fosfatase/genética , Hepatócitos/metabolismo , Resistência à Insulina/genética , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Masculino , Complexo Mediador/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
7.
Biophys Rep ; 2(2): 69-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018965

RESUMO

The Mediator complex was originally discovered in yeast, but it is conserved in all eukaryotes. Its best-known function is to regulate RNA polymerase II-dependent gene transcription. Although the mechanisms by which the Mediator complex regulates transcription are often complicated by the context-dependent regulation, this transcription cofactor complex plays a pivotal role in numerous biological pathways. Biochemical, molecular, and physiological studies using cancer cell lines or model organisms have established the current paradigm of the Mediator functions. However, the physiological roles of the mammalian Mediator complex remain poorly defined, but have attracted a great interest in recent years. In this short review, we will summarize some of the reported functions of selective Mediator subunits in the regulation of metabolism. These intriguing findings suggest that the Mediator complex may be an important player in nutrient sensing and energy balance in mammals.

8.
PLoS One ; 10(6): e0126240, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042770

RESUMO

In non-alcoholic fatty liver disease (NAFLD) and insulin resistance, hepatic de novo lipogenesis is often elevated, but the underlying mechanisms remain poorly understood. Recently, we show that CDK8 functions to suppress de novo lipogenesis. Here, we identify the mammalian target of rapamycin complex 1 (mTORC1) as a critical regulator of CDK8 and its activating partner CycC. Using pharmacologic and genetic approaches, we show that increased mTORC1 activation causes the reduction of the CDK8-CycC complex in vitro and in mouse liver in vivo. In addition, mTORC1 is more active in three mouse models of NAFLD, correlated with the lower abundance of the CDK8-CycC complex. Consistent with the inhibitory role of CDK8 on de novo lipogenesis, nuclear SREBP-1c proteins and lipogenic enzymes are accumulated in NAFLD models. Thus, our results suggest that mTORC1 activation in NAFLD and insulin resistance results in down-regulation of the CDK8-CycC complex and elevation of lipogenic protein expression.


Assuntos
Ciclina C/biossíntese , Quinase 8 Dependente de Ciclina/biossíntese , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Ciclina C/genética , Quinase 8 Dependente de Ciclina/genética , Células HEK293 , Humanos , Lipogênese/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Camundongos Obesos , Complexos Multiproteicos/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/genética
9.
Curr Opin Chem Biol ; 16(5-6): 535-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23102634

RESUMO

Sirtuins are NAD(+)-dependent deacetylases involved in chemical reversal of acetyllysine modifications of cellular proteins. Deacetylation catalyzed by sirtuins is implicated in regulating diverse biological processes, including energy homeostasis. The mechanism of NAD(+)-dependent deacetylation is proposed to occur via an ADPR-peptidyl-imidate intermediate, resulting from reaction of NAD(+) and an acetyllysine residue. This mechanism enables sirtuins to respond dynamically to intracellular fluctuations of NAD(+) and nicotinamide. Chemical probes such as nicotinamide antagonists and thioacetyl compounds provide key support for the imidate mechanism of sirtuin deacetylation catalysis. Novel new directions include chemical probes to study sirtuins in cells, and the discovery of novel post-translational modifications besides acetyl, such as succinyl and malonyl, that are regulated by sirtuins.


Assuntos
NAD/metabolismo , Sirtuínas/metabolismo , Acetilação , Animais , Humanos , Imidoésteres/metabolismo , Modelos Moleculares , Niacinamida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA