Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; : PHYTO12220479R, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38079287

RESUMO

Bacterial leaf spot is a serious disease of chili pepper (Capsicum spp.) caused by Xanthomonas euvesicatoria pv. euvesicatoria. Conventional resistance screening is time and resource intensive. It was considered that a quick and simple determination of cultivar susceptibility could be achieved through estimating bacterial titers of inoculated plants. A SYBR quantitative polymerase chain reaction (qPCR)-based assay was compared with conventional PCR, then used to detect and enumerate pathogen titers in serial dilutions and DNA extracted from infected plant leaves. The qPCR detection limit was approximately 1 CFU µl-1, 10 times more sensitive than conventional PCR. A linear correlation (R2 = 0.994) was obtained from the standard curve comparing plate-truthed serial dilutions of the pathogen with the qPCR cycle threshold. Six strains were used to inoculate cultivars Hugo and Warlock. One strain, X. euvesicatoria pv. euvesicatoria BRIP62403, was consistently the most virulent based on visual symptoms and pathogen titers in planta inferred by qPCR performed on DNA extracted from infected leaves 2 and 6 weeks postinoculation. Visual observations 6 weeks after inoculation were highly correlated (R2 = 0.8254) to pathogen titers. The qPCR method was used to categorize 20 chili pepper cultivars 2 weeks after inoculation. A high positive correlation (R2 = 0.6826) was observed between visual scoring and pathogen titers from 20 chili pepper cultivars, facilitating categorization of susceptible, intermediate, and resistant cultivars. The qPCR approach developed here facilitates susceptibility screening of chili pepper cultivars at an early stage of selection and could be readily adapted to a range of other pathosystems.

2.
J Biol Chem ; 298(11): 102548, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36181794

RESUMO

The evolutionarily conserved bacterial proteins MnmE and MnmG collectively install a carboxymethylaminomethyl (cmnm) group at the fifth position of wobble uridines of several tRNA species. While the reaction catalyzed by MnmEG is one of the central steps in the biosynthesis of the methylaminomethyl (mnm) posttranscriptional tRNA modification, details of the reaction remain elusive. Glycine is known to be the source of the carboxy methylamino moiety of cmnm, and a tetrahydrofolate (THF) analog is thought to supply the one carbon that is appended to the fifth position of U. However, the nature of the folate analog remains unknown. This article reports the in vitro biochemical reconstitution of the MnmEG reaction. Using isotopically labeled methyl and methylene THF analogs, we demonstrate that methylene THF is the true substrate. We also show that reduced FAD is required for the reaction and that DTT can replace the NADH in its role as a reductant. We discuss the implications of these methylene-THF and reductant requirements on the mechanism of this key tRNA modification catalyzed by MnmEG.


Assuntos
Proteínas de Escherichia coli , Transferases de Grupo de Um Carbono , Transferases de Grupo de Um Carbono/genética , Transferases de Grupo de Um Carbono/metabolismo , Uridina , Proteínas de Escherichia coli/metabolismo , Substâncias Redutoras , RNA de Transferência/metabolismo
3.
Biochemistry ; 61(23): 2643-2647, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36326713

RESUMO

The radical S-adenosyl-l-methionine (SAM) enzyme TYW1 catalyzes the condensation of C-2 and C-3 atoms of pyruvate with N-methylguanosine containing tRNAPhe to form 4-demethylwyosine (imG-14) modified tRNAPhe. The fate of C-1 is not known, and either formate or carbon dioxide (CO2) has been proposed. In this study, a coupled assay that transforms either CO2 or formate to oxaloacetate (OAA) was used to determine the fate of C-1. In the presence of [1-13C1]-pyruvate, 13C-enriched OAA was observed in a process that is concomitant with the formation of imG-14, under conditions that preferentially transform CO2 and not formate to OAA. These findings are discussed in the context of the cofactor content of TYW1 and a new role for the auxiliary cluster in catalyzing the oxidative cleavage of C-1-C-2 bond of pyruvate in the catalytic cycle of TYW1.


Assuntos
Proteínas Ferro-Enxofre , S-Adenosilmetionina , Dióxido de Carbono , Catálise , Proteínas Ferro-Enxofre/química , Metionina , Estresse Oxidativo , Ácido Pirúvico/química , RNA de Transferência/metabolismo , RNA de Transferência de Fenilalanina/química , S-Adenosilmetionina/metabolismo , Oxirredutases/metabolismo
4.
Plant Dis ; 106(2): 603-611, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34279986

RESUMO

Characteristic leaf spot and blight symptoms caused by Robbsia andropogonis on bougainvillea plants were found in three locations in different provinces of Mexico from 2019 to 2020. Eleven bacterial isolates with morphology similar to R. andropogonis were obtained from the diseased bougainvillea leaves. The isolates were confirmed as R. andropogonis by phenotypic tests and 16S rRNA, rpoD, and gyrB gene sequencing. In addition to bougainvillea, the strains were pathogenic to 10 agriculturally significant crops, including maize (Zea mays), sorghum (Sorghum bicolor), barley (Hordeum vulgare), coffee (Coffea arabiga), carnation (Dianthus caryophilus), Mexican lime (Citrus × aurantifolia), common bean (Phaseolus vulgaris), broadbeans (Vicia faba), and pea (Pisum sativum), but not runner bean (Phaseolus coccineus). The haplotypes network reveals the genetic variability among Mexican strains and its phylogeographic relationship with Japan, the U.S.A., and China. The presence of this pathogen represents a challenge for plant protection strategies in Mexico.


Assuntos
Burkholderiaceae , Nyctaginaceae , Burkholderiaceae/genética , México , Nyctaginaceae/genética , RNA Ribossômico 16S/genética
5.
Biochemistry ; 60(27): 2179-2185, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34184886

RESUMO

TYW1 is a radical S-adenosyl-l-methionine (SAM) enzyme that catalyzes the condensation of pyruvate and N-methylguanosine-containing tRNAPhe, forming 4-demethylwyosine-containing tRNAPhe. Homologues of TYW1 are found in both archaea and eukarya; archaeal homologues consist of a single domain, while eukaryal homologues contain a flavin binding domain in addition to the radical SAM domain shared with archaeal homologues. In this study, TYW1 from Saccharomyces cerevisiae (ScTYW1) was heterologously expressed in Escherichia coli and purified to homogeneity. ScTYW1 is purified with 0.54 ± 0.07 and 4.2 ± 1.9 equiv of flavin mononucleotide (FMN) and iron, respectively, per mole of protein, suggesting the protein is ∼50% replete with Fe-S clusters and FMN. While both NADPH and NADH are sufficient for activity, significantly more product is observed when used in combination with flavin nucleotides. ScTYW1 is the first example of a radical SAM flavoenzyme that is active with NAD(P)H alone.


Assuntos
Oxirredutases/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Mononucleotídeo de Flavina/metabolismo , NADP/metabolismo
6.
Biochemistry ; 60(45): 3347-3361, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34730336

RESUMO

Ribosomally synthesized post-translationally modified peptides (RiPPs) are ubiquitous and represent a structurally diverse class of natural products. The ribosomally encoded precursor polypeptides are often extensively modified post-translationally by enzymes that are encoded by coclustered genes. Radical S-adenosyl-l-methionine (SAM) enzymes catalyze numerous chemically challenging transformations. In RiPP biosynthetic pathways, these transformations include the formation of C-H, C-C, C-S, and C-O linkages. In this paper, we show that the Geobacter lovleyi sbtM gene encodes a radical SAM protein, SbtM, which catalyzes the cyclization of a Cys/SeCys residue in a minimal peptide substrate. Biochemical studies of this transformation support a mechanism involving H-atom abstraction at the C-3 of the substrate Cys to initiate the chemistry. Several possible cyclization products were considered. The collective biochemical, spectroscopic, mass spectral, and computational observations point to a thiooxazole as the product of the SbtM-catalyzed modification. To our knowledge, this is the first example of a radical SAM enzyme that catalyzes a transformation involving a SeCys-containing peptide and represents a new paradigm for formation of oxazole-containing RiPP natural products.


Assuntos
Peptídeos Antimicrobianos/metabolismo , Geobacter/metabolismo , S-Adenosilmetionina/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/fisiologia , Peptídeos Antimicrobianos/fisiologia , Produtos Biológicos/metabolismo , Catálise , Geobacter/patogenicidade , Espectrometria de Massas/métodos , Oxazóis , Processamento de Proteína Pós-Traducional/fisiologia , Proteômica/métodos , Ribossomos , S-Adenosilmetionina/metabolismo
7.
Mol Plant Microbe Interact ; 34(10): 1216-1222, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34185567

RESUMO

Despite the substantial economic impact of Curtobacterium flaccumfaciens pv. flaccumfaciens on legume production worldwide, the genetic basis of its pathogenicity and potential host association is poorly understood. The production of high-quality reference genome assemblies of C. flaccumfaciens pv. flaccumfaciens strains associated with different hosts sheds light on the genetic basis of its pathogenic variability and host association. Moreover, the study of recent outbreaks of bacterial wilt and microevolution of the pathogen in Australia requires access to high-quality reference genomes that are sufficiently closely related to the population being studied within Australia. We provide the first genome assemblies of C. flaccumfaciens pv. flaccumfaciens strains associated with mungbean and soybean, which revealed high variability in their plasmid composition. The analysis of C. flaccumfaciens pv. flaccumfaciens genomes revealed an extensive suite of carbohydrate-active enzymes potentially associated with pathogenicity, including four carbohydrate esterases, 50 glycoside hydrolases, 23 glycosyl transferases, and a polysaccharide lyase. We also identified 11 serine peptidases, three of which were located within a linear plasmid, pCff119. These high-quality assemblies and annotations will provide a foundation for population genomics studies of C. flaccumfaciens pv. flaccumfaciens in Australia and for answering fundamental questions regarding pathogenicity factors and adaptation of C. flaccumfaciens pv. flaccumfaciens to various hosts worldwide and, at a broader scale, contribute to unraveling genomic features of gram-positive, xylem-inhabiting bacterial pathogens.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fabaceae , Vigna , Actinobacteria , Doenças das Plantas , Plasmídeos/genética , Glycine max
8.
Br J Psychiatry ; 219(1): 357-358, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35048857

RESUMO

Clozapine is under-used in the UK, and Casetta et al's recent paper in the BJPsych adds to a growing number of small studies that support the use of intramuscular clozapine to initiate and maintain treatment with oral clozapine. However, intramuscular clozapine remains unlicensed and, because of the risks associated with its administration, it should be used only cautiously before it can be adopted more widely into mainstream clinical practice.


Assuntos
Antipsicóticos , Clozapina , Transtornos Psicóticos , Esquizofrenia , Antipsicóticos/efeitos adversos , Clozapina/efeitos adversos , Humanos , Transtornos Psicóticos/tratamento farmacológico , Esquizofrenia/tratamento farmacológico
9.
Plant Dis ; 105(5): 1482-1489, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33074075

RESUMO

Sunflower (Helianthus annuus L.) is the third largest grain crop by area planted in South Africa (SA). The annual yield is negatively affected by sunflower rust caused by Puccinia helianthi Schw. (Phe). Four Phe races were described in SA in the middle 1990s, but since then, no new race descriptions have been conducted. This has resulted in an information gap on the current Phe population, making it difficult to explain increased disease incidence and loss of resistance in previously resistant hybrids. To address this, 114 Phe field isolates along with 23 historic isolates were phenotyped using the international set of 11 sunflower differentials containing the R1, R2/R10, R3, R4a, R4b, R4c, R4d, R5, Pu6, and Radv resistance genes. Three new Phe races were identified, bringing the total number of South African races recorded to seven. No avirulence was detected attributable to the R1 gene, with the R4d and Radv genes remaining effective. Four main genetic lineages were detected with no obvious correlation between phenotype and genotype. The detection of three genetic lineages consisting exclusively of field isolates collected post-2006 suggested the possible recent entry of exotic introductions into SA. This, combined with the fact that one lineage consisted exclusively of the most virulent race Phe7721, confirmed a clear shift in the Phe population that could explain the increased virulence and occurrence of the disease in SA.


Assuntos
Doenças das Plantas , Puccinia , Ligação Genética , Marcadores Genéticos , Genótipo , Fenótipo , África do Sul
10.
J Am Chem Soc ; 140(22): 6842-6852, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29792696

RESUMO

TYW1 is a radical S-adenosyl-l-methionine (SAM) enzyme that catalyzes the condensation of pyruvate and N-methylguanosine to form the posttranscriptional modification, 4-demethylwyosine, in situ on transfer RNA (tRNA). Two mechanisms have been proposed for this transformation, with one of the possible mechanisms invoking a Schiff base intermediate formed between a conserved lysine residue and pyruvate. Utilizing a combination of mass spectrometry and X-ray crystallography, we have obtained evidence to support the formation of a Schiff base lysine adduct in TYW1. When 13C labeled pyruvate is used, the mass shift of the adduct matches that of the labeled pyruvate, indicating that pyruvate is the source of the adduct. Furthermore, a crystal structure of TYW1 provides visualization of the Schiff base lysine-pyruvate adduct, which is positioned directly adjacent to the auxiliary [4Fe-4S] cluster. The adduct coordinates the unique iron of the auxiliary cluster through the lysine nitrogen and a carboxylate oxygen, reminiscent of how the radical SAM [4Fe-4S] cluster is coordinated by SAM. The structure provides insight into the binding site for tRNA and further suggests how radical SAM chemistry can be combined with Schiff base chemistry for RNA modification.


Assuntos
Carboxiliases/metabolismo , Methanocaldococcus/enzimologia , S-Adenosilmetionina/metabolismo , Bases de Schiff/química , Radicais Livres/química , Guanosina/análogos & derivados , Estrutura Molecular , S-Adenosilmetionina/química
11.
Clin Immunol ; 197: 96-106, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30217791

RESUMO

The central component of the complement cascade, C3, is involved in various biological functions, including opsonization of foreign bodies, clearance of waste material, activation of immune cells, and triggering of pathways controlling development. Given its broad role in immune responses, particularly in phagocytosis and the clearance of microbes, a deficiency in complement C3 in humans is often associated with multiple bacterial infections. Interestingly, an increased susceptibility to infections appears to occur mainly in the first two years of life and then wanes throughout adulthood. In view of the well-established connection between C3 deficiency and infections, therapeutic inhibition of complement at the level of C3 is often considered with caution or disregarded. We therefore set out to investigate the immune and biochemical profile of non-human primates under prolonged treatment with the C3 inhibitor compstatin (Cp40 analog). Cynomolgus monkeys were dosed subcutaneously with Cp40, resulting in systemic inhibition of C3, for 1 week, 2 weeks, or 3 months. Plasma concentrations of both C3 and Cp40 were measured periodically and complete saturation of plasma C3 was confirmed. No differences in hematological, biochemical, or immunological parameters were identified in the blood or tissues of animals treated with Cp40 when compared to those injected with vehicle alone. Further, skin wounds showed no signs of infection in those treated with Cp40. In fact, Cp40 treatment was associated with a trend toward accelerated wound healing when compared with the control group. In addition, a biodistribution study in a rhesus monkey indicated that the distribution of Cp40 in the body is associated with the presence of C3, concentrating in organs that accumulate blood and produce C3. Overall, our data suggest that systemic C3 inhibition in healthy adult non-human primates is not associated with a weakened immune system or susceptibility to infections.


Assuntos
Complemento C3/antagonistas & inibidores , Inativadores do Complemento/toxicidade , Peptídeos Cíclicos/toxicidade , Cicatrização/imunologia , Infecção dos Ferimentos/epidemiologia , Animais , Complemento C3/imunologia , Complemento C3/metabolismo , Inativadores do Complemento/farmacocinética , Macaca fascicularis , Macaca mulatta , Peptídeos Cíclicos/farmacocinética , Fatores de Tempo , Distribuição Tecidual , Ferimentos e Lesões/imunologia
12.
Phytopathology ; 108(4): 479-486, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29256830

RESUMO

Chlorotic streak is a global disease of commercial sugarcane (Saccharum spp. hybrids). The disease is transmitted by wet soil, water, as well as in diseased planting material. Although first recognized almost 90 years ago and despite significant research effort, the identity of the causal agent has been elusive. Metagenomic high throughput sequencing (HTS) facilitated the discovery of novel protistan ribosomal and nuclear genes in chlorotic streak-infected sugarcane. These sequences suggest a possible causal agent belonging to the order Cercomonadida (Rhizaria, phylum Cercozoa). An organism with morphological features similar to cercomonads (=Cercomonadida) was isolated into pure axenic culture from internal stalk tissues of infected sugarcane. The isolated organism contained DNA sequences identical to those identified in infected plants by HTS. The DNA sequences and the morphology of the organism did not match any known species. Here we present a new genus and species, Phytocercomonas venanatans, which is associated with chlorotic streak of sugarcane. Amplicon sequencing also supports that P. venanatans is associated with this disease. This is the first reported member from Cercomonadida showing a probable pathogenic association with higher plants.


Assuntos
Cercozoários/classificação , Metagenômica , Doenças das Plantas/parasitologia , Saccharum/parasitologia , Teorema de Bayes , Cercozoários/citologia , Cercozoários/genética , Cercozoários/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de DNA , Xilema/parasitologia
13.
Plant Dis ; 102(3): 473-482, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673496

RESUMO

The Australian sugar industry has never pursued genetic resistance to ratoon stunting disease (RSD), despite it being widely considered to be one of the most important diseases of sugarcane (Saccharum interspecific hybrids). This is because of a prevailing view that the disease is economically managed, and that no further action needs to take place. However, there is a range of epidemiological evidence that suggests that RSD is having a more significant impact than what is generally recognized. This review traces the factors that have led to an industry stance that is apparently without any scientific justification, and which has tended to downplay the significance of RSD on Australian sugarcane productivity, and thus has led to significant lost production. The consequences of this position are that RSD may be influencing broad but poorly explained issues such as commercial ratooning performance of existing varieties and the "yield decline" that has been subject to much scrutiny, if not much success in resolving the issue. Based on the available information, this review calls on the Australian sugar industry to prioritize selection for RSD resistance in the plant improvement program.


Assuntos
Actinomycetales/fisiologia , Resistência à Doença , Doenças das Plantas/imunologia , Saccharum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/estatística & dados numéricos , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/imunologia , Feixe Vascular de Plantas/microbiologia , Saccharum/genética , Saccharum/microbiologia
14.
Biochemistry ; 56(30): 3874-3876, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28708394

RESUMO

Viperin (virus inhibitory protein, endoplasmic reticulum-associated, interferon-inducible) is a widely distributed protein that is expressed in response to infection and causes antiviral effects against a broad spectrum of viruses. Viperin is a member of the radical S-adenosyl-l-methionine (SAM) superfamily of enzymes, which typically employ a 4Fe-4S cluster to reductively cleave SAM to initiate chemistry. Though the specific reaction catalyzed by viperin remains unknown, it has been shown that expression of viperin causes an increase in the fluidity of lipid membranes, which impedes the budding of nascent viral particles from the membrane inhibiting propagation of the infection. Herein, we show that expression of the human viperin homologue induces a dramatically elongated morphology of the host Escherichia coli cells. Mutation of an essential cysteine that coordinates the radical SAM cluster abrogates this effect. Thus, the native radical SAM activity of viperin is likely occurring in the host bacteria, indicating the elusive substrate is shared between both bacteria and humans, significantly narrowing the range of potential candidate substrates and providing a convenient bacterial platform from which future studies can occur.


Assuntos
Escherichia coli/fisiologia , Proteínas/fisiologia , S-Adenosilmetionina/metabolismo , Substituição de Aminoácidos , Aderência Bacteriana , Cisteína/química , Escherichia coli/citologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Cinética , Microscopia Confocal , Mutagênese Sítio-Dirigida , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas/química , Proteínas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
15.
Plant Dis ; 101(8): 1422-1431, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30678587

RESUMO

Leifsonia xyli subsp. xyli, causal agent of ratoon stunting disease (RSD) of sugarcane (Saccharum interspecific hybrids), is the most well-known member of the Microbacteriaceae genus Leifsonia. However, the presence of other Leifsonia strains associated with sugarcane has not been reported. A total of 697 Australian and 40 Indonesian sugarcane fields were screened by leaf sheath biopsy (LSB) PCR using primers specific for L. xyli subsp. xyli, in addition to primers designed to amplify DNA from other members of the genus Leifsonia. While L. xyli subsp. xyli was detected in 126 fields, a total of 37 distinct and novel Leifsonia and non-Leifsonia strains were detected in 116 fields. Representatives of these strains were also detected in multiple samples of expressed xylem sap. Sequencing and phylogenetic analyses demonstrated the presence of a broad complex of novel Leifsonia strains, in addition to strains closely related to the recently erected Cnuibacter genus. Attempts to isolate Leifsonia strains were unsuccessful; however, one strain related to Cnuibacter was recovered from expressed xylem sap. Among the genetically diverse lineages discovered, identical genotypes were present in multiple sugarcane varieties growing in disparate regions in different years, strongly suggesting an ongoing association with sugarcane. The epidemiological significance of these strains is unknown, but there is evidence that they can interfere with serological and microscopic RSD diagnostics, and there is the potential that they may represent new and distinct pathologies of sugarcane.


Assuntos
Actinomycetales , Saccharum , Actinomycetales/classificação , Actinomycetales/genética , Actinomycetales/fisiologia , Austrália , Indonésia , Filogenia , Saccharum/microbiologia
16.
Health Mark Q ; 34(2): 81-96, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28590885

RESUMO

Based on a survey of prescription drug users (N = 408), this study revealed that: (a) the frequency of consumers' personal experience of prescription medicine adverse reactions negatively related to the extent of their optimistic bias about the chances of such events, (b) consumers' perceived personal control over adverse reactions positively related to optimistic bias, and (c) optimistic bias related more negatively to intentions to seek risk information when consumer skepticism toward direct-to-consumer advertising was high. When skepticism was low to average, optimistic bias did not inhibit such intentions. Implications and recommendations for the practice of direct-to-consumer advertising are provided.


Assuntos
Publicidade Direta ao Consumidor/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/psicologia , Comportamento de Busca de Informação , Otimismo/psicologia , Adolescente , Adulto , Idoso , Atitude Frente a Saúde , Feminino , Humanos , Intenção , Masculino , Pessoa de Meia-Idade , Percepção , Adulto Jovem
17.
Phys Rev Lett ; 116(14): 147803, 2016 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-27104729

RESUMO

Resonant x-ray scattering shows that the bulk structure of the twist-bend liquid crystal phase, recently discovered in bent molecular dimers, has spatial periodicity without electron density modulation, indicating a lattice-free heliconical nematic precession of orientation that has helical glide symmetry. In situ study of the bulk helix texture of the dimer CB7CB shows an elastically confined temperature-dependent minimum helix pitch, but a remarkable elastic softness of pitch in response to dilative stresses. Scattering from the helix is not detectable in the higher temperature nematic phase.

18.
Nat Chem Biol ; 10(2): 106-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362703

RESUMO

7-carboxy-7-deazaguanine synthase (QueE) catalyzes a key S-adenosyl-L-methionine (AdoMet)- and Mg(2+)-dependent radical-mediated ring contraction step, which is common to the biosynthetic pathways of all deazapurine-containing compounds. QueE is a member of the AdoMet radical superfamily, which employs the 5'-deoxyadenosyl radical from reductive cleavage of AdoMet to initiate chemistry. To provide a mechanistic rationale for this elaborate transformation, we present the crystal structure of a QueE along with structures of pre- and post-turnover states. We find that substrate binds perpendicular to the [4Fe-4S]-bound AdoMet, exposing its C6 hydrogen atom for abstraction and generating the binding site for Mg(2+), which coordinates directly to the substrate. The Burkholderia multivorans structure reported here varies from all other previously characterized members of the AdoMet radical superfamily in that it contains a hypermodified (ß6/α3) protein core and an expanded cluster-binding motif, CX14CX2C.


Assuntos
Magnésio/química , Manganês/química , Modelos Moleculares , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Sódio/química , Sítios de Ligação , Burkholderia/enzimologia , Radicais Livres/química , Radicais Livres/metabolismo , Ligação de Hidrogênio/efeitos dos fármacos , Magnésio/farmacologia , Manganês/farmacologia , Estrutura Molecular , Estrutura Terciária de Proteína , Sódio/farmacologia
19.
Plant Dis ; 100(12): 2492-2498, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30686165

RESUMO

Ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli, is arguably one of the most devastating diseases of sugarcane. Four diagnostic techniques were compared for 100 fields of sugarcane (Saccharum interspecific hybrids) of unknown infection status. These were quantitative polymerase chain reaction on pooled leaf sheath biopsies (LSB-qPCR), conventional PCR on the same templates (LSB-PCR), evaporative-binding enzyme immunoassay (EB-EIA) coupled with phase contrast microscopy (PCM) on expressed xylem sap from the same fields, and conventional PCR on the same xylem sap samples. LSB-qPCR and LSB-PCR detected the causal agent in 27 and 18 fields, respectively, whereas, from samples of expressed xylem sap from the same fields, conventional PCR identified 12 infections and EB-EIA/PCM detected L. xyli subsp. xyli in 3 fields. The sensitivities of qPCR and PCR were approximately 103 and 104 CFU ml-1, respectively, determined from plate counts of a dilution series. Tests were conducted on a further 139 LSB samples from across the Australian industry, with qPCR and PCR diagnosing RSD in 31 and 25 fields, respectively. Using qPCR and PCR on LSB samples, RSD was diagnosed in a range of cultivars throughout the year, and qPCR and PCR could detect L. xyli subsp. xyli in sugarcane ranging from 3 months to greater than 1 year old.

20.
Nano Lett ; 15(5): 3420-4, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25867200

RESUMO

We report the first in situ measurement of the helical pitch of the helical nanofilament B4 phase of bent-core liquid crystals using linearly polarized, resonant soft X-ray scattering at the carbon K-edge. A strong, anisotropic scattering peak corresponding to the half-pitch of the twisted smectic layer structure was observed. The equilibrium helical half-pitch of NOBOW is found to be 120 nm, essentially independent of temperature. However, the helical pitch can be tuned by mixing guest organic molecules with the bent-core host, followed by thermal annealing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA