Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Lancet ; 389(10081): 1821-1830, 2017 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-28363483

RESUMO

BACKGROUND: People with chronic tetraplegia, due to high-cervical spinal cord injury, can regain limb movements through coordinated electrical stimulation of peripheral muscles and nerves, known as functional electrical stimulation (FES). Users typically command FES systems through other preserved, but unrelated and limited in number, volitional movements (eg, facial muscle activity, head movements, shoulder shrugs). We report the findings of an individual with traumatic high-cervical spinal cord injury who coordinated reaching and grasping movements using his own paralysed arm and hand, reanimated through implanted FES, and commanded using his own cortical signals through an intracortical brain-computer interface (iBCI). METHODS: We recruited a participant into the BrainGate2 clinical trial, an ongoing study that obtains safety information regarding an intracortical neural interface device, and investigates the feasibility of people with tetraplegia controlling assistive devices using their cortical signals. Surgical procedures were performed at University Hospitals Cleveland Medical Center (Cleveland, OH, USA). Study procedures and data analyses were performed at Case Western Reserve University (Cleveland, OH, USA) and the US Department of Veterans Affairs, Louis Stokes Cleveland Veterans Affairs Medical Center (Cleveland, OH, USA). The study participant was a 53-year-old man with a spinal cord injury (cervical level 4, American Spinal Injury Association Impairment Scale category A). He received two intracortical microelectrode arrays in the hand area of his motor cortex, and 4 months and 9 months later received a total of 36 implanted percutaneous electrodes in his right upper and lower arm to electrically stimulate his hand, elbow, and shoulder muscles. The participant used a motorised mobile arm support for gravitational assistance and to provide humeral abduction and adduction under cortical control. We assessed the participant's ability to cortically command his paralysed arm to perform simple single-joint arm and hand movements and functionally meaningful multi-joint movements. We compared iBCI control of his paralysed arm with that of a virtual three-dimensional arm. This study is registered with ClinicalTrials.gov, number NCT00912041. FINDINGS: The intracortical implant occurred on Dec 1, 2014, and we are continuing to study the participant. The last session included in this report was Nov 7, 2016. The point-to-point target acquisition sessions began on Oct 8, 2015 (311 days after implant). The participant successfully cortically commanded single-joint and coordinated multi-joint arm movements for point-to-point target acquisitions (80-100% accuracy), using first a virtual arm and second his own arm animated by FES. Using his paralysed arm, the participant volitionally performed self-paced reaches to drink a mug of coffee (successfully completing 11 of 12 attempts within a single session 463 days after implant) and feed himself (717 days after implant). INTERPRETATION: To our knowledge, this is the first report of a combined implanted FES+iBCI neuroprosthesis for restoring both reaching and grasping movements to people with chronic tetraplegia due to spinal cord injury, and represents a major advance, with a clear translational path, for clinically viable neuroprostheses for restoration of reaching and grasping after paralysis. FUNDING: National Institutes of Health, Department of Veterans Affairs.


Assuntos
Interfaces Cérebro-Computador/estatística & dados numéricos , Encéfalo/fisiopatologia , Força da Mão/fisiologia , Músculo Esquelético/fisiopatologia , Quadriplegia/diagnóstico , Traumatismos da Medula Espinal/fisiopatologia , Encéfalo/cirurgia , Terapia por Estimulação Elétrica/métodos , Eletrodos Implantados/normas , Estudos de Viabilidade , Mãos/fisiologia , Humanos , Masculino , Microeletrodos/efeitos adversos , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Movimento/fisiologia , Quadriplegia/fisiopatologia , Quadriplegia/cirurgia , Tecnologia Assistiva/estatística & dados numéricos , Traumatismos da Medula Espinal/terapia , Estados Unidos , United States Department of Veterans Affairs , Interface Usuário-Computador
2.
Sci Rep ; 9(1): 8881, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222030

RESUMO

Decoders optimized offline to reconstruct intended movements from neural recordings sometimes fail to achieve optimal performance online when they are used in closed-loop as part of an intracortical brain-computer interface (iBCI). This is because typical decoder calibration routines do not model the emergent interactions between the decoder, the user, and the task parameters (e.g. target size). Here, we investigated the feasibility of simulating online performance to better guide decoder parameter selection and design. Three participants in the BrainGate2 pilot clinical trial controlled a computer cursor using a linear velocity decoder under different gain (speed scaling) and temporal smoothing parameters and acquired targets with different radii and distances. We show that a user-specific iBCI feedback control model can predict how performance changes under these different decoder and task parameters in held-out data. We also used the model to optimize a nonlinear speed scaling function for the decoder. When used online with two participants, it increased the dynamic range of decoded speeds and decreased the time taken to acquire targets (compared to an optimized standard decoder). These results suggest that it is feasible to simulate iBCI performance accurately enough to be useful for quantitative decoder optimization and design.


Assuntos
Biorretroalimentação Psicológica , Interfaces Cérebro-Computador , Modelos Neurológicos , Algoritmos , Calibragem , Humanos , Desempenho Psicomotor
3.
IEEE Trans Biomed Eng ; 65(9): 2066-2078, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29989927

RESUMO

OBJECTIVE: Recent reports indicate that making better assumptions about the user's intended movement can improve the accuracy of decoder calibration for intracortical brain-computer interfaces. Several methods now exist for estimating user intent, including an optimal feedback control model, a piecewise-linear feedback control model, ReFIT, and other heuristics. Which of these methods yields the best decoding performance? METHODS: Using data from the BrainGate2 pilot clinical trial, we measured how a steady-state velocity Kalman filter decoder was affected by the choice of intention estimation method. We examined three separate components of the Kalman filter: dimensionality reduction, temporal smoothing, and output gain (speed scaling). RESULTS: The decoder's dimensionality reduction properties were largely unaffected by the intention estimation method. Decoded velocity vectors differed by <5% in terms of angular error and speed vs. target distance curves across methods. In contrast, the smoothing and gain properties of the decoder were greatly affected (> 50% difference in average values). Since the optimal gain and smoothing properties are task-specific (e.g. lower gains are better for smaller targets but worse for larger targets), no one method was better for all tasks. CONCLUSION: Our results show that, when gain and smoothing differences are accounted for, current intention estimation methods yield nearly equivalent decoders and that simple models of user intent, such as a position error vector (target position minus cursor position), perform comparably to more elaborate models. Our results also highlight that simple differences in gain and smoothing properties have a large effect on online performance and can confound decoder comparisons.


Assuntos
Interfaces Cérebro-Computador , Intenção , Córtex Motor/fisiologia , Processamento de Sinais Assistido por Computador , Algoritmos , Calibragem , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Movimento/fisiologia , Quadriplegia/reabilitação
4.
J Neural Eng ; 15(2): 026007, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29363625

RESUMO

OBJECTIVE: Brain-computer interfaces (BCIs) can enable individuals with tetraplegia to communicate and control external devices. Though much progress has been made in improving the speed and robustness of neural control provided by intracortical BCIs, little research has been devoted to minimizing the amount of time spent on decoder calibration. APPROACH: We investigated the amount of time users needed to calibrate decoders and achieve performance saturation using two markedly different decoding algorithms: the steady-state Kalman filter, and a novel technique using Gaussian process regression (GP-DKF). MAIN RESULTS: Three people with tetraplegia gained rapid closed-loop neural cursor control and peak, plateaued decoder performance within 3 min of initializing calibration. We also show that a BCI-naïve user (T5) was able to rapidly attain closed-loop neural cursor control with the GP-DKF using self-selected movement imagery on his first-ever day of closed-loop BCI use, acquiring a target 37 s after initiating calibration. SIGNIFICANCE: These results demonstrate the potential for an intracortical BCI to be used immediately after deployment by people with paralysis, without the need for user learning or extensive system calibration.


Assuntos
Interfaces Cérebro-Computador , Neuroestimuladores Implantáveis , Córtex Motor/fisiologia , Quadriplegia/terapia , Adulto , Interfaces Cérebro-Computador/tendências , Calibragem , Feminino , Humanos , Neuroestimuladores Implantáveis/tendências , Masculino , Pessoa de Meia-Idade , Quadriplegia/fisiopatologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA