Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Adv Funct Mater ; 31(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33708033

RESUMO

Cardiovascular stents are life-saving devices and one of the top 10 medical breakthroughs of the 21st century. Decades of research and clinical trials have taught us about the effects of material (metal or polymer), design (geometry, strut thickness, and the number of connectors), and drug-elution on vasculature mechanics, hemocompatibility, biocompatibility, and patient health. Recently developed novel bioresorbable stents are intended to overcome common issues of chronic inflammation, in-stent restenosis, and stent thrombosis associated with permanent stents, but there is still much to learn. Increased knowledge and advanced methods in material processing have led to new stent formulations aimed at improving the performance of their predecessors but often comes with potential tradeoffs. This review aims to discuss the advantages and disadvantages of stent material interactions with the host within five areas of contrasting characteristics, such as 1) metal or polymer, 2) bioresorbable or permanent, 3) drug elution or no drug elution, 4) bare or surface-modified, and 5) self-expanding or balloon-expanding perspectives, as they relate to pre-clinical and clinical outcomes and concludes with directions for future studies.

2.
Nano Lett ; 20(6): 4594-4602, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32401528

RESUMO

Bioresorbable metals are quickly advancing in the field of regenerative medicine for their promises of tissue restoration without adverse consequences from their lifelong presence. Zn has recently risen to the top of bioresorbable metals with great potential as a medical implant. However, cell adhesion and colonization on the Zn substrate surface remains challenging, which could damper interfacial tissue-implant integration. Inspired by the fact that surface topography can regulate cell function and fate, we hypothesize that topography on bioresorbable Zn can dictate material biocompatibility, cell differentiation, and immunomodulation. To verify this, surface-engineered Zn plates with nano-, submicro-, and microtopographies were systematically investigated. The microscale topography exhibited increased adhesion, pronounced self-renewal, and enhanced osteogenic differentiation of bone cells as well as less macrophage inflammatory polarization, reduced platelet adhesion, and better hemocompatibility. Thus, surface topography could be a viable strategy to enhance bioresorbable Zn's biocompatibility and integration with surrounding tissues while reducing inflammation.


Assuntos
Implantes Absorvíveis , Osso e Ossos/citologia , Macrófagos/citologia , Osteogênese , Zinco , Animais , Adesão Celular , Diferenciação Celular , Linhagem Celular , Camundongos , Propriedades de Superfície , Titânio
3.
JOM (1989) ; 72(5): 1902-1909, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33737795

RESUMO

Surface roughness is an important factor in improving the bone-implant contact area to enhance bone regeneration, yet this aspect has not been applied to absorbable metals. Textured zinc surfaces with varying degrees of surface roughness were produced using a salt-preform method with fine- and coarse-grained salts and compared to a polished control sample. The resulting surfaces were characterized by scanning electron microscopy (SEM), surface roughness, corrosion rates, and in vitro cytotoxicity. The resulting textured surfaces exhibit micron-sized cavities and increased roughness consistent with the initial salt particle size. The corrosion rate was shown to accelerate significantly as compared to the polished control sample, and pre-osteoblasts displayed healthy morphologies on the textures. The results confirm textured zinc surfaces support cell adhesion and can be used to control the corrosion rate. This study represents an important intermediate step that can be applied to porous absorbable metal scaffolds for bone-implant applications.

4.
Rep Prog Phys ; 75(3): 036504, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22790423

RESUMO

Archaeometallurgy is an important field of study which allows us to assess the quality and value of ancient metal artifacts and better understand the ancient cultures that made them. Scientific investigation of ancient metal artifacts is often necessary due to their lack of well-documented histories. One important requirement of analytical techniques is that they be non-destructive, since many of these artifacts are unique and irreplaceable. Most synchrotron radiation (SR) techniques meet this requirement. In this review, the characteristics, capabilities, and advantages and disadvantages of current and future SR facilities are discussed. I examine the application of SR techniques such as x-ray imaging (radiography/microscopy and tomography), x-ray diffraction, x-ray fluorescence, x-ray spectroscopy, Fourier transform infrared spectroscopy, and lastly combined SR techniques to the field of archaeometallurgy. Previous case studies using these various SR techniques are discussed and potential future SR techniques are addressed.

5.
ACS Omega ; 6(16): 10557-10567, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34056210

RESUMO

PbSO4 is a key component in the charging and discharging of lead acid batteries-such as the cycling of automotive batteries. PbSO4 is a poor conductor that forms on the positive and negative electrodes during discharging and dissolves during charging of a lead acid battery. Over time, buildup of PbSO4 occurs on the electrodes, ultimately reducing the efficiency of the battery. This study aims to determine the nucleation and growth mechanisms of PbSO4 nanoparticles in various solutions to potentially reduce or control the buildup of PbSO4 on battery electrodes over time. The time dependency of particle morphology was observed using various reaction conditions. PbSO4 particles were created using premixed solutions at various times of reaction. H2O, acetone, methanol, ethanol, and isopropanol were used to stop the reaction and development of the PbSO4 particles. The structure of the nanoparticles was characterized via transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, and selected area electron diffraction. This study provides insight into the mechanism by which PbSO4 nanoparticles form in various solutions and reveals that the degree of complexity of the solution plays a large role in the nucleation and growth of the PbSO4 nanoparticles. This insight can provide avenues to reduce unwanted buildup of PbSO4 on battery electrodes over time, which can extend battery life and performance.

6.
Mater Sci Eng C Mater Biol Appl ; 110: 110738, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204047

RESUMO

As a degradable metal, zinc (Zn) has attracted an immense amount of interest as the next generation of bioresorbable implants thanks to its modest corrosion rate and its vital role in bone remodeling, yet very few studies have thoroughly investigated its functionality as a porous implant for bone tissue engineering purposes. Zn bone scaffolds with two different pore sizes of 900 µm and 2 mm were fabricated using additive manufacturing-produced templates combined with casting. The compressive properties, corrosion rates, biocompatibility, and antibacterial performance of the bioscaffolds were examined and compared to a non-porous control. The resulting textured and porous Zn scaffolds exhibit a fully interconnected pore structure with precise control over topology. As pore size and porosity increased, mechanical strength decreased, and corrosion rate accelerated. Cell adhesion and growth on scaffolds were enhanced after an ex vivo pretreatment method. In vitro cellular tests confirmed good biocompatibility of the scaffolds. As porosity increased, potent antibacterial rates were also observed. Taken together, these results demonstrate that Zn porous bone scaffolds are promising for orthopedic applications.


Assuntos
Antibacterianos , Osso e Ossos/metabolismo , Escherichia coli/crescimento & desenvolvimento , Osteoblastos/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Engenharia Tecidual , Alicerces Teciduais/química , Zinco/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Osso e Ossos/citologia , Linhagem Celular , Camundongos , Osteoblastos/citologia , Porosidade
7.
Anal Bioanal Chem ; 395(1): 171-84, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19629458

RESUMO

Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used to determine the bulk metal elemental composition of 62 modern bronze sculptures cast in Paris in the first half of the twentieth century from the collections of The Art Institute of Chicago and the Philadelphia Museum of Art. As a result, a comprehensive survey of the alloy composition of the sculptures of many prominent European artists of the early twentieth century is presented here for the first time. The sculptures in this study consist of predominantly copper with two main alloying elements (zinc and tin). By plotting the concentrations of these two elements (zinc and tin) against each other for all the sculptures studied, three clusters of data become apparent: (A) high-zinc brass; (B) low-zinc brass; (C) tin bronze. These clusters correlate to specific foundries, which used specific casting methods (sand or lost wax) that were influenced by individual preferences and technical skills of the foundry masters. For instance, the high-zinc brass alloys (with the highest levels of tin and zinc and the lowest melting temperature) correspond to most of the Picasso sculptures, correlate with the Valsuani foundry, and are associated with the most recent sculptures (post-WWII) and with the lost-wax casting method. By expanding the ICP-OES database of objects studied, these material correlations may become useful for identifying, dating, or possibly even authenticating other bronzes that do not bear foundry marks. Figure.

8.
Sci Rep ; 9(1): 11726, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409821

RESUMO

Various ecological and economical concerns have spurred mankind's quest for materials that can provide enhanced weight savings and improved fuel efficiency. As part of this pursuit, we have microstructurally tailored an exceptionally high-strength titanium alloy, Ti-6Al-2Sn-4Zr-6Mo (Ti6246) through friction stir processing (FSP). FSP has altered the as-received bimodal microstructure into a unique modulated microstructure comprised of fine acicular α″-laths with nano precipitates within the laths. The sequence of phase transformations responsible for the modulated microstructure and consequently for the strength is discussed with the help of scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction studies. The specific strength attained in one of the conditions is close to 450 MPa m3/mg, which is about 22% to 85% greater than any commercially available metallic material. Therefore, our novel nano particle strengthened Ti alloy is a potential replacement for many structural alloys, enabling significant weight reduction opportunities.

9.
ACS Appl Mater Interfaces ; 9(33): 27453-27461, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28787130

RESUMO

Zn biomaterials attract strong attentions recently for load-bearing medical implants because of their mechanical properties similar to bone, biocompatibility, and degradability at a more matched rate to tissue healing. It has been shown previously that Zn alloys are beneficial for bone regeneration, but the supporting mechanisms have not been explored in detail. Here, we studied the biological responses of human bone marrow mesenchymal stem cells (hMSC) to Zn and the underlying cellular signaling mechanisms. Typical Mg material AZ31 was used as a comparative benchmark control. Direct culture of cells on the materials revealed that cell adhesion, proliferation, and motility were higher on Zn than on AZ31. Significant cytoskeletal reorganizations induced by Zn or AZ31 were also observed. Mineralization of extracellular matrix (ECM) and hMSC osteogenic differentiation, measured by Alizarin red and ALP staining and activities, were significantly enhanced when cells were cultured with Zn or AZ31. Quantitative PCR also showed the increased expression of bone-related genes including ALP, collagen I, and osteopontin. Using small RNA interference to knockdown related key molecules, we illustrated the mechanisms of Zn-induced cellular signaling. TRPM7 and GPR39 appear to be the major cellular receptors facilitating Zn2+-entry into hMSC. The intracellular Zn2+ then activates the cAMP-PKA pathway and triggers intracellular Ca2+ responses, leading to activation of MAPK. In addition, Zn2+ activates the Gαq-PLC-AKT pathway as well. Eventually, all of this signaling would lead to enhanced differential regulation of genes, cell survival/growth and differentiation, ECM mineralization, osteogenesis, and other cellular activities.


Assuntos
Células-Tronco Mesenquimais , Fosfatase Alcalina , Materiais Biocompatíveis , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Humanos , Magnésio , Osteogênese , Zinco
10.
Nat Commun ; 2: 518, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22044997

RESUMO

Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co(1-x)Fe(x) thin films, effective magnetostriction λ(eff) as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ(100) is the dominant component, this number translates to an upper limit of magnetostriction of λ(100)≈5λ(eff) >1,000 p.p.m. Microstructural analyses of Co(1-x)Fe(x) films indicate that maximal magnetostriction occurs at compositions near the (fcc+bcc)/bcc phase boundary and originates from precipitation of an equilibrium Co-rich fcc phase embedded in a Fe-rich bcc matrix. The results indicate that the recently proposed heterogeneous magnetostriction mechanism can be used to guide exploration of compounds with unusual magnetoelastic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA