Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(23): e2310946, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38229536

RESUMO

Owing to their extraordinary photophysical properties, organometal halide perovskites are emerging as a new material class for X-ray detection. However, the existence of toxic lead makes their commercialization questionable and should readily be replaced. Accordingly, several lead alternatives have been introduced into the framework of conventional perovskites, resulting in various new perovskite dimensionalities. Among these, Pb-free lower dimensional perovskites (LPVKs) not only show promising X-ray detecting properties due to their higher ionic migration energy, wider and tunable energy bandgap, smaller dark currents, and structural versatility but also exhibit extended environmental stability. Herein, first, the structural organization of the PVKs (including LPVKs) is summarized. In the context of X-ray detectors (XDs), the outstanding properties of the LPVKs and active layer synthesis routes are elaborated afterward. Subsequently, their applications in direct XDs are extensively discussed and the device performance, in terms of the synthesis method, device architecture, active layer size, figure of merits, and device stability are tabulated. Finally, the review is concluded with an in-depth outlook, thoroughly exploring the present challenges to LPVKs XDs, proposing innovative solutions, and future directions. This review provides valuable insights into optimizing non-toxic Pb-free perovskite XDs, paving the way for future advancements in the field.

2.
Int J Phytoremediation ; 25(5): 630-645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35862619

RESUMO

Micro and macro-morphological features contribute to plants' tolerance to a variety of environmental pollutants. The contribution of such structural modifications in the phytoremediation potential of Diplachne fusca populations collected from five saline habitats were explored when treated with 100 to 400 mM NaCl for 75 days along with control. Structural modifications in the populations from the highest salinity included development of aerenchyma in stem instead of chlorenchyma, absence of excretory hairs in stem, and exceptionally large trichomes on the leaf surface to help excretion of excess salt. Large parenchyma cells provided more space for water and solute storage, while broad metaxylem vessels were linked to better conduction water and nutrients, which ultimately excreted via glandular hairs, microhairs, and vesicular hairs. Broad metaxylem vessels and exceptionally long hairs observed in the populations collected from 52 dS m-1. In conclusion, large stem aerenchyma, exceptionally large trichomes on the leaf surface, and tightly packed outer cortical region in roots with intensive sclerification just inside the epidermis accompanied with salt excretion via glandular hairs, microhairs, and vesicular hairs were the main anatomical modifications involved in the phytoremediation potential of D. fusca in hyper-saline environments.


Morpho-anatomical characteristics of the differently adapted populations of Diplachne fusca has never been reported. In particular, structural variation in their mechanism of adaptation for salinity tolerance was investigated for the first time in current study.


Assuntos
Poaceae , Plantas Tolerantes a Sal , Biodegradação Ambiental , Cloreto de Sódio/química , Água , Solução Salina , Salinidade
3.
Ecotoxicol Environ Saf ; 226: 112853, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34619475

RESUMO

Climate change and the consequent alteration in agricultural circumstances enhance the susceptibility of fresh water use particularly in water-scarce regions. Marginal quality water reuse is a common alternative practice but possible perils of metal accretion in plant parts are mostly ignored. The present research aimed to probe the impact of treated wastewater (TWW) and untreated wastewater (UTWW) on metal accumulation in flower petals and their influence on essential oil contents of fragrant Rosa species (R. Gruss-an-teplitz, R. bourboniana, R. centifolia, R. damascena) in a peri-urban area of Faisalabad, Pakistan during January, 2017 to December, 2018. The mineral and chemical contents in canal water (CW) and TWW were less than recommended levels of national environmental quality standards (NEQS) for wastewater of Pakistan. The experimentally UTWW possessed higher electrical conductivity (EC), biological and chemical oxygen demand (BOD and COD), and some metals (Pb, Co, Cr) that were above the permissible levels. The experimental data revealed that except Cr other metals contents in the flower petals were less than the WHO recommended limits (for medicinal plants) under experimental irrigation regimes. Rosa centifolia and R. damascena possessed higher metal i.e. Zn, Cu, Pb, Cr, Co contents while Fe and Ni contents were higher in R. Gruss-an-Teplitz and R. bourboniana respectively. There were twelve constituents which were detected in essential oil by gas chromatography. Major constituents were phenyl ethyl alcohol, citronellol, geranyl acetate, γ- undelactone, methyl eugenol, and limonene whose share was 48.17%, 41.11%, 8.46%, 4.82%, 4.44%, and 4.15% respectively whereas concentrations of other 06 constituents were less than 3.7%. Phenyl ethyl alcohol, lion shared constituent of essential oil was found highest (48.17%) in R. Gruss-an-Teplitz whereas minimum level was recorded in R. damascena (28.84%) under CW. In contrast, citronellol (chief component of fragrance) was highest in R. damascena (41.11%) in UTWW while the lowest level was found in R. Gruss-an-Teplitz (17.41%) in CW. This study confirmed the variations in metal concentrations of Rosa species due to different absorbability of each metal in flower petals. It also indicates that wastewater did not affect the composition but there were quantitative differences in aroma constituents and chemical composition of essential oil.


Assuntos
Metais Pesados , Óleos Voláteis , Rosa , Monitoramento Ambiental , Flores/química , Metais Pesados/análise , Águas Residuárias/análise , Água
4.
Bull Environ Contam Toxicol ; 105(2): 270-276, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32661664

RESUMO

Marigold (Calendula calypso) is a multipurpose ornamental plant, but its cadmium (Cd) tolerance and phytoremediation potential is unknown. The proposed study was carried out to unravel Cd partitioning, physiological and oxidative stress responses of C. calypso grown under Cd stress. Plants were grown for four months in pots having different soil Cd levels: 0, 25, 50, 75, and 100 mg kg-1 soil. Plant growth, biomass, photosynthetic pigments, leaf water contents, stomatal conductance, and membrane stability index were not decreased at 25 mg kg-1 Cd. At higher levels of Cd stress, activities of antioxidant enzymes (SOD, APX, CAT, POD) increased to mitigate H2O2 and lipid peroxidation. Cadmium uptake in plants increased with increasing soil Cd levels, and roots accumulated a greater portion of Cd, followed by shoots and flowers, respectively. On the basis of Cd accumulation and its tolerance, it was determined that C. calypso can be successfully grown for phytostabilization of Cd contaminated soils.


Assuntos
Biodegradação Ambiental , Cádmio/metabolismo , Calendula/fisiologia , Poluentes do Solo/metabolismo , Antioxidantes , Biomassa , Cádmio/análise , Peróxido de Hidrogênio , Neonicotinoides , Estresse Oxidativo , Fotossíntese , Folhas de Planta/química , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Tiazinas
5.
Physiol Mol Biol Plants ; 26(2): 247-260, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32158132

RESUMO

This study investigated the effects of different temperatures, photoperiods and spermidine concentrations on the flowering time regulation of Anoectochilus roxburghii by measuring changes in the soluble sugar, soluble protein, malondialdehyde and proline contents, and the peroxidase, superoxide dismutase and catalase activities in A. roxburghii flower buds. The flowering time could be advanced under 25/20 °C (day/night), 16/8-h (day/night) long day conditions or low spermidine concentrations. The plants grew more rapidly and flowering rates were greater. The flowering time could be delayed under a low temperature of 20/15 °C or 8/16-h short day conditions, resulting in a low flowering rate. Under a high temperature of 30/25 °C or high spermidine concentrations, the plants could not flower normally and even died. There were significant differences in the seven measured indices among the various treatments. Thus, different treatments had significant effects on the flowering time regulation and flowering quality of A. roxburghii, providing a reliable theoretical basis for further studies on the flowering-related regulatory mechanisms of A. roxburghii.

6.
Phys Chem Chem Phys ; 20(37): 23837-23846, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30204170

RESUMO

Resistive random-access memory (ReRAM) is expected to be the next-generation non-volatile memory device because of its fast operation speed and low power consumption. Switching media in most ReMAM are oxides which are rigid and require high-temperature processing. Here, we review two emerging types of low-cost solution-processed ReRAMs with sandwich structures: one is hybrid nanocomposites with charge-trapping nanoparticles (NPs) embedded in a polymer matrix, and the other is hybrid halide perovskites which have been intensively investigated recently for optoelectronic applications. We will review the recent developments in materials selection, device performance and operation mechanisms. Resistive switching in hybrid materials and composites is ubiquitous because of the abundant existence of charge-trapping defects and interfaces. The future challenges and potential breakthroughs will also be outlined.

7.
Ecotoxicol Environ Saf ; 159: 240-248, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29753826

RESUMO

Wastewater is an alternative to traditional sources of renewable irrigation water in agriculture, particularly in water-scarce regions. However, the possible risks due to heavy metals accumulation in plant tissues are often overlooked by producers. The present study aimed to identify heavy metals-induced structural modifications to roots of scented Rosa species that were irrigated with water of marginal quality. The chemical and mineral contents from the experimental irrigation canal water (control) and treated wastewater were below the limits recommended by the Pakistan Environmental Protection Agency (Pak-EPA) for medicinal plants. The experimentally untreated wastewater contained electrical conductivity (EC), chemical oxygen demand (COD), biological oxygen demand (BOD), and heavy metals (Co, Cu, Cd, Pb) that were above the recommended limits. The responses by wastewater-treated Rosa species (Rosa damascena, R. bourboniana, R. Gruss-an-Teplitz, and R. centifolia) were evaluated. The experimental data revealed that treated wastewater significantly increased the thickness of collenchyma (cortex and pith) and parenchyma tissues (vascular bundle, xylem, and phloem) of R. Gruss-an-Teplitz. Root dermal tissues (epidermis) of R. bourboniana also responded to treated wastewater. R. damascena and R. centifolia were the least affected species, under the experimental irrigation conditions. Collenchyma and dermal tissues were thicker in R. damascena and R. Gruss-an-Teplitz under untreated wastewater conditions. In parenchyma tissues, vascular bundles were thicker in R. damascena in untreated wastewater conditions, while the xylem and phloem of R. Gruss-an-Teplitz were thicker where treated wastewater was applied. In tissues other than the vascular bundle, the differences in anatomical metrics due to the experimental irrigation treatments were greater during the second year of the experiment than in the first year. The contents of metals other than chromium in the roots and stems of roses were below the WHO limits, under all of the experimental irrigation conditions. Rosa centifolia contained higher heavy metals content than the other experimental species, and heavy metals content was associated with anatomical changes due to the treatments. We conclude that, under conditions of wastewater irrigation, R. Gruss-an-Teplitz was highly resistant; R. damascena was moderately resistant while R. bourboniana and R. centifolia were the most susceptible to irrigation with marginal quality water. This is the first report of plant tissue responses to wastewater irrigation by the experimental species. Regarding the accumulation of heavy metals in rose plant tissues, the results confirm that untreated wastewater must be treated to grow Rosa species where water is scarce.


Assuntos
Metais Pesados/toxicidade , Rosa/efeitos dos fármacos , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Agricultura/métodos , Análise da Demanda Biológica de Oxigênio , Monitoramento Ambiental , Metais Pesados/análise , Paquistão , Rosa/crescimento & desenvolvimento , Rosa/metabolismo , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Qualidade da Água
8.
Plant Cell Rep ; 34(9): 1477-88, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26123291

RESUMO

KEY MESSAGE: The innovations in chromosome engineering have improved the efficiency of interrogation breeding, and the identification and transfer of resistance genes from alien to native species. Recent advances in molecular biology and cytogenetics have brought revolutionary, conceptual developments in mitosis and meiosis research, chromosome structure and manipulation, gene expression and regulation, and gene silencing. Cytogenetic studies offer integrative tools for imaging, genetics, epigenetics, and cytological information that can be employed to enhance chromosome and molecular genomic research in plant taxa. In situ hybridization techniques, such as fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH), can identify chromosome morphologies and sequences, amount and distribution of various types of chromatin in chromosomes, and genome organization during the metaphase stage of meiosis. Over the past few decades, various new molecular cytogenetic applications have been developed. The FISH and GISH techniques present an authentic model for analyzing the individual chromosome, chromosomal segments, or the genomes of natural and artificial hybrid plants. These have become the most reliable techniques for studying allopolyploids, because most cultivated plants have been developed through hybridization or polyploidization. Moreover, introgression of the genes and chromatin from the wild types into cultivated species can also be analyzed. Since hybrid derivatives may have variable alien chromosome numbers or chromosome arms, the use of these approaches opens new avenues for accurately identifying genome differences.


Assuntos
Análise Citogenética/métodos , Genoma de Planta , Hibridização in Situ Fluorescente/métodos , Plantas/genética , Cromossomos de Plantas/genética , Hibridização Genética , Cariotipagem , Recombinação Genética/genética
9.
Langmuir ; 30(4): 1183-9, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24400696

RESUMO

A new class of memristors based on long-range-ordered CeO2 nanocubes with a controlled degree of self-assembly is presented, in which the regularity and range of the nanocubes can be greatly improved with a highly concentrated dispersed surfactant. The magnitudes of the hydrophobicity and surface energy components as functions of surfactant concentration were also investigated. The self-assembled nanostructure was found to demonstrate excellent degradation in device threshold voltage with excellent uniformity in resistive switching parameters, particularly a set voltage distribution of ∼ 0.2 V over 30 successive cycles and a fast response time for writing (0.2 µs) and erasing (1 µs) operations, thus offering great potential for nonvolatile memory applications with high performance at low cost.

10.
Plant Cell Rep ; 33(2): 215-23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24311154

RESUMO

Unreduced gamete formation derived via abnormal meiotic cell division is an important approach to polyploidy breeding. This process is considered the main driving force in spontaneous polyploids formation in nature, but the potential application of these gametes to plant breeding has not been fully exploited. An effective mechanism for their artificial induction is needed to attain greater genetic variation and enable efficient use of unreduced gametes in breeding programs. Different approaches have been employed for 2n-pollen production including interspecific hybridization, manipulation of environmental factors and treatment with nitrous oxide, trifluralin, colchicine, oryzalin and other chemicals. These chemicals can act as a stimulus to produce viable 2n pollen; however, their exact mode of action, optimum concentration and developmental stages are still not known. Identification of efficient methods of inducing 2n-gamete formation will help increase pollen germination of sterile interspecific hybrids for inter-genomic recombination and introgression breeding to develop new polyploid cultivars and increase heterozygosity among plant populations. Additionally, the application of genomic tools and identification and isolation of genes and mechanisms involved in the induction of 2n-gamete will enable increased exploitation in different plant species, which will open new avenues for plant breeding.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Plantas/genética , Cruzamento , Colchicina/farmacologia , Cruzamentos Genéticos , Diploide , Meio Ambiente , Células Germinativas Vegetais , Hibridização Genética , Meiose , Óxido Nitroso/farmacologia , Plantas/efeitos dos fármacos , Pólen/efeitos dos fármacos , Pólen/genética , Trifluralina/farmacologia
11.
Sci Rep ; 14(1): 4772, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413788

RESUMO

Nutrient leaching is a major reason for fresh and ground water contamination. Menthol is the major bioactive ingredient of Mentha arvensis L. and one of the most traded products of global essential oil market. The indigenous production of menthol crystals in developing countries of the world can prove to be the backbone for local growers and poor farmers. Therefore, present research was designed to check the effects of nano-structured plant growth regulators (PGRs) (28-homobrassinolide and ethephon) with reduced leaching potentials on the essential oil and menthol (%) of Mentha arvensis L. The prepared nano-formulations were characterized by Fourier transform infrared (FTIR) spectroscopy, Laser induced breakdown spectroscopy (LIBS), Differential scanning colorimetry-thermal gravimetric analysis (DSC-TGA), Scanning electron microscopy (SEM), Atomic absorption spectrometry (AAS) and Zeta potential and Zeta size analysis. The menthol (%) was determined by modified spectrophotometric and gas chromatographic (GC) method. The highest essential oil (%) was obtained by the application of 28-homobrassinolide-Zn-NPs-L-II (0.92 ± 0.09%) and ethephon-Ca-NPs-L-III (0.91 ± 0.05%) as compared to the control (0.65 ± 0.03%) and blank (0.62 ± 0.09%). The highest menthol (%) was obtained by applying 28-homobrassinolide-Ca-NPs-L-I (80.06 ± 0.07%), 28-homobrassinolide-Ca-NPs-L-II (80.48 ± 0.09%) and 28-homobrassinolide-Ca-NPs-L-III (80.84 ± 0.11%) and ethephon-Ca-NPs-L-III (81.53 ± 0.17%) and ethephon-Zn-NPs-L-II (81.93 ± 0.26%) as compared to control (67.19 ± 0.14%) and blank (63.93 ± 0.17%).


Assuntos
Mentha , Óleos Voláteis , Compostos Organofosforados , Mentol/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/química , Mentha/metabolismo
12.
Nanomicro Lett ; 16(1): 215, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874816

RESUMO

MXene has garnered widespread recognition in the scientific community due to its remarkable properties, including excellent thermal stability, high conductivity, good hydrophilicity and dispersibility, easy processability, tunable surface properties, and admirable flexibility. MXenes have been categorized into different families based on the number of M and X layers in Mn+1Xn, such as M2X, M3X2, M4X3, and, recently, M5X4. Among these families, M2X and M3X2, particularly Ti3C2, have been greatly explored while limited studies have been given to M5X4 MXene synthesis. Meanwhile, studies on the M4X3 MXene family have developed recently, hence, demanding a compilation of evaluated studies. Herein, this review provides a systematic overview of the latest advancements in M4X3 MXenes, focusing on their properties and applications in energy storage devices. The objective of this review is to provide guidance to researchers on fostering M4X3 MXene-based nanomaterials, not only for energy storage devices but also for broader applications.

13.
Rev Environ Health ; 38(4): 681-696, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36038264

RESUMO

Global CO2 emissions from different industries have been increasing at an alarming rate. This growth is outpacing the efforts, nations are putting in place to reduce their carbon footprints. In this topical review, we critically analyze the level of CO2 emissions on a global scale and across various industries and activities within them and the dominant anthropogenic forcing instability. The global CO2 emission from various economic sectors such as industries, transportation and variety of waste sources were traced globally and regionally. To contextualize our review, the sector wise CO2 emission trends data for a period more than a decade is reviewed which highlighted the main sources of emissions. The data shows the overall reduction of carbon footprints and its progress across various sectors is very limited. The governing factors for this continued global pattern can be ascribed to two main factors: high consumer demands, and poor efforts towards shifting low and zero carbon services across all sectors. Some efforts have been witnessed to shift towards clean fuels and renewables, particularly in Europe and North America. However, rapid growth in industrialization limits the shifting of fossil-based energy systems towards less harmful systems. In Asia, particularly in eastern, southern, and south-eastern regions, the carbon footprints were found to increased owing to a huge demand for materials production, travelling and energy services. Therefore, it is of utmost importance to identify, understand and tackle the most persistent and climate-harmful factors across all industries and drive such policies to substitute the fossil fuels with renewables.


Assuntos
Dióxido de Carbono , Indústrias , Dióxido de Carbono/análise , Desenvolvimento Industrial , Ásia , Meios de Transporte
14.
Rev Environ Health ; 37(4): 585-596, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34592070

RESUMO

During the COVID-19 pandemic, many positive shifts have been observed in the ecosystem, with a significant decrease in the greenhouse gas emissions and air pollution. On the other hand, there were unavoidable negative shifts due to a surge in demand for plastic products such as food and groceries' delivery packaging, single-use plastics, medical and personal protective equipment to prevent transmission of COVID-19. Plastic pollution can be considered as a key environmental issue in world due to the huge footprints of plastics on natural ecosystems and public health. Herein, we presented an overview on the rise of plastic pollution during the COVID-19 pandemic. The potential sources of plastic waste during COVID-19 with its negative effects on the environment such as marine ecosystems and the global economics are highlighted. We also suggested some strategies and recommendations to tackle plastic leakages by applying feedstock recycling, sterilization, and with the use of biodegradable plastics that have become a sustainable alternative to fossil fuel plastics. Also, the importance of elevating public awareness and some recommendations to mitigate plastic generated during the pandemic has been addressed as well.


Assuntos
COVID-19 , Gerenciamento de Resíduos , Humanos , Plásticos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Ecossistema
15.
Chemosphere ; 288(Pt 2): 132525, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34653481

RESUMO

Herein, a simple but highly effective strategy of thermal annealing to modulate oxygen vacancies related defects in ZnFe2O4 (ZFO) nanoparticles for obtaining enhanced wastewater treatment efficiencies is reported. The as-prepared nanoparticles were thermally annealed at three different temperatures (500 °C, 600 °C and 700 °C) and their phase purity was confirmed by X-ray diffraction (XRD). All samples were found to exhibit pure phases of ZFO with different crystallite sizes ranging from 10 nm to 25 nm. The transmission electron microscope (TEM) images showed well dispersed nanoparticles and a strong correlation of grain size growth with annealing temperature was established. The optical absorption and emission characteristics were estimated through UV-visible and Photoluminescence (PL) spectroscopy. Raman spectroscopy and X-ray Photoelectron Spectroscopy (XPS) confirmed the variation of oxygen vacancies in the synthesized samples' lattice. The photocatalytic activities of all samples were investigated and the highest efficiencies were recorded for the ZFO samples annealed at 500 °C. Under high salinity condition, the organic dye degradation efficiency of the same sample remained the highest among all. The excellent dye degradation abilities in ZFO samples can be attributed to the abundance of oxygen vacancies in the crystal lattice that slow down the recombination rate during the photocatalysis process. Moreover, cytotoxicity tests revealed that all prepared ZFO samples showed insignificant cell structure effects on Picochlorum sp microalgae, as verified by Fourier-transform infrared (FTIR) spectroscopy. On the other hand, no significant changes were detected on the viable cell concentration and Chlorophyll a content. This work presents a systematic way to finely tune the crystal sizes and to modulate oxygen related defects in ZFO through a highly effective annealing approach to signify their potential in industrial wastewater and seawater treatment processes.


Assuntos
Nanopartículas , Purificação da Água , Clorofila A , Oxigênio , Espectroscopia de Infravermelho com Transformada de Fourier
16.
3 Biotech ; 12(9): 186, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35875175

RESUMO

Organic nature of dyes and their commercially made products are widely utilized in many industries including paper, cosmetics, pharmaceuticals, photography, petroleum as well as in textile manufacturing. The textile industry being the top most consumer of a large variety of dyes during various unit processes operation generates substantial amount of wastewater; hence, nominated as "Major Polluter of Potable Water". The direct discharge of such effluents into environment poses serious threats to the functioning of biotic communities of natural ecosystems. The detection of these synthetic dyes is considered as relatively easy, however, it is extremely difficult to completely eliminate them from wastewater and freshwater ecosystems. Aromatic chemical structure seems to be the main reason behind low biodegradability of these dyes. Currently, various physiochemical and biological methods are employed for their remediation. Among them, microbial degradation has attracted greater attention due to its sustainability, high efficiency, cost effectiveness, and eco-friendly nature. The current review presents recent advances in biodegradation of industrial dyes towards a sustainable and tangible technological innovative solutions as an alternative to existing conventional physicochemical treatment processes.

17.
Saudi J Biol Sci ; 28(3): 1770-1778, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33732061

RESUMO

Self-fertilization (also termed selfing) is a mode of reproduction that occurs in hermaphrodites and has evolved several times in various plant and animal species. A transition from outbreeding to selfing in hermaphroditic flowers is typically associated with changes in flower morphology and functionality. This study aimed to identify genetic effects of selfing in the F2 progeny of F1 hybrid developed by crossing Lilium lancifolium with the Asiatic Lilium hybrid 'Dreamland.' Fluorescence in situ hybridization (FISH) and inter-simple sequence repeats (ISSR) techniques were used to detect genetic variations in plants produced by selfing. The FISH results showed that F1 hybrid were similar to the female parent (L. lancifolium) regarding the 45S loci, but F2 individuals showed variation in the number and location of the respective loci. In F2 progeny, F2-2, F2-3, F2-4, F2-5, and F2-8 hybrids expressed two strong and one weak 5S signal on chromosome 3, whereas F2-7 and F2-9 individuals expressed one strong and two weak signals. Only two strong 5S signals were detected in an F2-1 plant. The ISSR results showed a maximum similarity value of 0.6269 between the female parent and the F2-2 hybrid. Regarding similarity to the male parent, a maximum value of 0.6119 was found in the F2-1 and F2-2 hybrids. The highest genetic distance from L. lancifolium and the Asiatic Lilium hybrid 'Dreamland' was observed in the F2-4 progeny (0.6352 and 0.7547, respectively). Phylogenetic relationships showed that the F2 progeny were closer to the male parent than to the female parent. Self-fertilization showed effects on variation among the F2 progeny, and effects on the genome were confirmed using FISH and ISSR analyses.

18.
Plants (Basel) ; 10(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072096

RESUMO

Trehalose (Tre) and salicylic acid (SA) are increasingly used to mitigate drought stress in crop plants. In this study, a pot experiment was performed to study the influence of Tre and SA applied individually or in combination on the growth, photosynthesis, and antioxidant responses of sweet basil (Ocimum basilicum L.) exposed to drought stress. Basil plants were watered to 60% or 100% field capacity with or without treatment with 30 mM Tre and/or 1 mM SA. Drought negatively affected growth, physiological parameters, and antioxidant responses. Application of Tre and/or SA resulted in growth recovery, increased photosynthesis, and reduced oxidative stress. Application of Tre mitigated the detrimental effects of drought more than SA. Furthermore, co-application of Tre and SA largely eliminated the negative impact of drought by reducing oxidative stress through increased activities of antioxidant enzymes superoxide dismutase, peroxidase, and catalase, as well as the accumulation of the protective osmolytes proline and glycine betaine. Combined Tre and SA application improved water use efficiency and reduced the amount of malondialdehyde in drought-stressed plants. Our results suggested that combined application of Tre and SA may trigger defense mechanisms of sweet basil to better mitigate oxidative stress induced by drought stress, thereby improving plant growth.

19.
Front Plant Sci ; 12: 707061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497622

RESUMO

Alpinia zerumbet (Zingiberaceae) is a unique ornamental and medicinal plant primarily used in food ingredients and traditional medicine. While organic amendments such as biochar (BC) and compost (Co) have been demonstrated to improve plant productivity, no studies have examined their effects on the growth, physiology, and secondary metabolites of A. zerumbet. This study evaluated the impact of the amendment of BC, Co, or a biochar and compost mixture (BC+Co) on modifying and improving the growth, photosynthesis, antioxidant status, and secondary metabolism of A. zerumbet grown on sandy loam soil. The morpho-physiological and biochemical investigation revealed variation in the response of A. zerumbet to organic amendments. The amendment of BC and BC+Co significantly increased net photosynthetic rates of plants by more than 28%, chlorophyll a and b contents by 92 and 78%, respectively, and carboxylation efficiency by 50% compared with those grown in the sandy loam soil without amendment. Furthermore, the amendment significantly decreased plant oxidative stress, measured as leaf free proline and glycine betaine. Enzymatic antioxidant activity, total phenols, and flavonoids also varied in their response to the organic amendments. In conclusion, this study shows that BC and/or Co amendments are an efficient and sustainable method for improving the metabolite contents and reducing oxidative stress in A. zerumbet.

20.
Adv Sci (Weinh) ; 8(2): 2003138, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511019

RESUMO

The surface chemistry of colloidal quantum dots (CQD) play a crucial role in fabricating highly efficient and stable solar cells. However, as-synthesized PbS CQDs are significantly off-stoichiometric and contain inhomogeneously distributed S and Pb atoms at the surface, which results in undercharged Pb atoms, dangling bonds of S atoms and uncapped sites, thus causing surface trap states. Moreover, conventional ligand exchange processes cannot efficiently eliminate these undesired atom configurations and defect sites. Here, potassium triiodide (KI3) additives are combined with conventional PbX2 matrix ligands to simultaneously eliminate the undercharged Pb species and dangling S sites via reacting with molecular I2 generated from the reversible reaction KI3 â‡Œ I2 + KI. Meanwhile, high surface coverage shells on PbS CQDs are built via PbX2 and KI ligands. The implementation of KI3 additives remarkably suppresses the surface trap states and enhances the device stability due to the surface chemistry optimization. The resultant solar cells achieve the best power convention efficiency of 12.1% and retain 94% of its initial efficiency under 20 h continuous operation in air, while the control devices with KI additive deliver an efficiency of 11.0% and retains 87% of their initial efficiency under the same conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA