Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 19(2): 1104-1111, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608697

RESUMO

Many-body interactions in photoexcited semiconductors can bring about strongly interacting electronic states, culminating in the fully ionized matter of electron-hole plasma (EHP) and electron-hole liquid (EHL). These exotic phases exhibit unique electronic properties, such as metallic conductivity and metastable high photoexcitation density, which can be the basis for future transformative applications. However, the cryogenic condition required for its formation has limited the study of dense plasma phases to a purely academic pursuit in a restricted parameter space. This paradigm can potentially change with the recent experimental observation of these phases in atomically thin MoS2 and MoTe2 at room temperature. A fundamental understanding of EHP and EHL dynamics is critical for developing novel applications on this versatile layered platform. In this work, we studied the formation and dissipation of EHP in monolayer MoS2. Unlike previous results in bulk semiconductors, our results reveal that electromechanical material changes in monolayer MoS2 during photoexcitation play a significant role in dense EHP formation. Within the free-standing geometry, photoexcitation is accompanied by an unconstrained thermal expansion, resulting in a direct-to-indirect gap electronic transition at a critical lattice spacing and fluence. This dramatic altering of the material's energetic landscape extends carrier lifetimes by 2 orders of magnitude and allows the density required for EHP formation. The result is a stable dense plasma state that is sustained with modest optical photoexcitation. Our findings pave the way for novel applications based on dense plasma states in two-dimensional semiconductors.

2.
Nano Lett ; 17(10): 6056-6061, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28873308

RESUMO

We perform the transient absorption spectroscopy experiments to investigate the dynamics of the low-energy collective electron-hole excitations in α-copper phthalocyanine thin films. The results are interpreted in terms of the third-order nonlinear polarization response function. It is found that, initially excited in the molecular plane, the intramolecular Frenkel exciton polarization reorients with time to align along the molecular chain direction to form coupled Frenkel-charge-transfer exciton states, the eigenstates of the one-dimensional periodic molecular lattice. The process pinpoints the direction of the charge separation in α-copper phthalocyanine and similar organic molecular structures. Being able to observe and monitor such processes is important both for understanding the physical principles of organic thin film solar energy conversion device operation and for the development of organic optoelectronics in general.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA