Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.826
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(5): 1328-1340.e13, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814014

RESUMO

Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.


Assuntos
Variação Genética/genética , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/genética , Animais , Linhagem Celular , Vetores de Doenças , Especificidade de Hospedeiro/genética
2.
Cell ; 179(3): 772-786.e19, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31626774

RESUMO

Understanding neural circuits requires deciphering interactions among myriad cell types defined by spatial organization, connectivity, gene expression, and other properties. Resolving these cell types requires both single-neuron resolution and high throughput, a challenging combination with conventional methods. Here, we introduce barcoded anatomy resolved by sequencing (BARseq), a multiplexed method based on RNA barcoding for mapping projections of thousands of spatially resolved neurons in a single brain and relating those projections to other properties such as gene or Cre expression. Mapping the projections to 11 areas of 3,579 neurons in mouse auditory cortex using BARseq confirmed the laminar organization of the three top classes (intratelencephalic [IT], pyramidal tract-like [PT-like], and corticothalamic [CT]) of projection neurons. In depth analysis uncovered a projection type restricted almost exclusively to transcriptionally defined subtypes of IT neurons. By bridging anatomical and transcriptomic approaches at cellular resolution with high throughput, BARseq can potentially uncover the organizing principles underlying the structure and formation of neural circuits.


Assuntos
Córtex Auditivo/metabolismo , Rede Nervosa/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Mapeamento Encefálico , Humanos , Integrases/genética , Camundongos , Neuritos/metabolismo , Células Piramidais/metabolismo , Tratos Piramidais/metabolismo
3.
Mol Cell ; 83(22): 4123-4140.e12, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37848033

RESUMO

Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.


Assuntos
Ligases , Melanoma , Humanos , Células HeLa , Ubiquitinação , Ubiquitinas
4.
Proc Natl Acad Sci U S A ; 121(39): e2402322121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39284066

RESUMO

Enhanced warming of the Arctic region relative to the rest of the globe, known as Arctic amplification, is caused by a variety of diverse factors, many of which are influenced by the Atlantic meridional overturning circulation (AMOC). Here, we quantify the role of AMOC changes in Arctic amplification throughout the twenty-first century by comparing two suites of climate model simulations under the same climate change scenario but with two different AMOC states: one with a weakened AMOC and another with a steady AMOC. We find that a weakened AMOC can reduce annual mean Arctic warming by 2 °C by the end of the century. A primary contributor to this reduction in warming is surface albedo feedback, related to a smaller sea ice loss due to AMOC slowdown. Another major contributor is the changes in ocean heat uptake. The weakened AMOC and its associated anomalous ocean heat transport divergence lead to increased ocean heat uptake and surface cooling. These two factors are inextricably linked on seasonal timescales, and their relative importance for Arctic amplification can vary by season. The weakened AMOC can also abate Arctic warming via lapse rate feedback, creating marked cooling from the surface to lower-to-mid troposphere while resulting in relatively weaker cooling in the upper troposphere. Additionally, the weakened AMOC increases the low-level cloud fraction over the North Atlantic warming hole, causing significant cooling there via shortwave (sw) cloud feedback despite the overall effect of sw cloud feedback being a slight warming of the average temperature over the Arctic.

5.
Nat Methods ; 20(1): 149-161, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36550275

RESUMO

Age-related macular degeneration (AMD), a leading cause of blindness, initiates in the outer-blood-retina-barrier (oBRB) formed by the retinal pigment epithelium (RPE), Bruch's membrane, and choriocapillaris. The mechanisms of AMD initiation and progression remain poorly understood owing to the lack of physiologically relevant human oBRB models. To this end, we engineered a native-like three-dimensional (3D) oBRB tissue (3D-oBRB) by bioprinting endothelial cells, pericytes, and fibroblasts on the basal side of a biodegradable scaffold and establishing an RPE monolayer on top. In this 3D-oBRB model, a fully-polarized RPE monolayer provides barrier resistance, induces choriocapillaris fenestration, and supports the formation of Bruch's-membrane-like structure by inducing changes in gene expression in cells of the choroid. Complement activation in the 3D-oBRB triggers dry AMD phenotypes (including subRPE lipid-rich deposits called drusen and choriocapillaris degeneration), and HIF-α stabilization or STAT3 overactivation induce choriocapillaris neovascularization and type-I wet AMD phenotype. The 3D-oBRB provides a physiologically relevant model to studying RPE-choriocapillaris interactions under healthy and diseased conditions.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Células Endoteliais , Corioide/metabolismo , Retina/metabolismo , Degeneração Macular/metabolismo
6.
PLoS Pathog ; 20(6): e1012246, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857264

RESUMO

Antibody-mediated immunity plays a key role in protection against SARS-CoV-2. We characterized B-cell-derived anti-SARS-CoV-2 RBD antibody repertoires from vaccinated and infected individuals and elucidate the mechanism of action of broadly neutralizing antibodies and dissect antibodies at the epitope level. The breadth and clonality of anti-RBD B cell response varies among individuals. The majority of neutralizing antibody clones lose or exhibit reduced activities against Beta, Delta, and Omicron variants. Nevertheless, a portion of anti-RBD antibody clones that develops after a primary series or booster dose of COVID-19 vaccination exhibit broad neutralization against emerging Omicron BA.2, BA.4, BA.5, BQ.1.1, XBB.1.5 and XBB.1.16 variants. These broadly neutralizing antibodies share genetic features including a conserved usage of the IGHV3-53 and 3-9 genes and recognize three clustered epitopes of the RBD, including epitopes that partially overlap the classically defined set identified early in the pandemic. The Fab-RBD crystal and Fab-Spike complex structures corroborate the epitope grouping of antibodies and reveal the detailed binding mode of broadly neutralizing antibodies. Structure-guided mutagenesis improves binding and neutralization potency of antibody with Omicron variants via a single amino-substitution. Together, these results provide an immunological basis for partial protection against severe COVID-19 by the ancestral strain-based vaccine and indicate guidance for next generation monoclonal antibody development and vaccine design.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Imunização Secundária , Epitopos/imunologia , Linfócitos B/imunologia
7.
Proc Natl Acad Sci U S A ; 119(40): e2209524119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161946

RESUMO

Collagen is the most abundant structural protein in humans, providing crucial mechanical properties, including high strength and toughness, in tissues. Collagen-based biomaterials are, therefore, used for tissue repair and regeneration. Utilizing collagen effectively during materials processing ex vivo and subsequent function in vivo requires stability over wide temperature ranges to avoid denaturation and loss of structure, measured as melting temperature (Tm). Although significant research has been conducted on understanding how collagen primary amino acid sequences correspond to Tm values, a robust framework to facilitate the design of collagen sequences with specific Tm remains a challenge. Here, we develop a general model using a genetic algorithm within a deep learning framework to design collagen sequences with specific Tm values. We report 1,000 de novo collagen sequences, and we show that we can efficiently use this model to generate collagen sequences and verify their Tm values using both experimental and computational methods. We find that the model accurately predicts Tm values within a few degrees centigrade. Further, using this model, we conduct a high-throughput study to identify the most frequently occurring collagen triplets that can be directly incorporated into collagen. We further discovered that the number of hydrogen bonds within collagen calculated with molecular dynamics (MD) is directly correlated to the experimental measurement of triple-helical quality. Ultimately, we see this work as a critical step to helping researchers develop collagen sequences with specific Tm values for intended materials manufacturing methods and biomedical applications, realizing a mechanistic materials by design paradigm.


Assuntos
Aprendizado Profundo , Sequência de Aminoácidos , Materiais Biocompatíveis , Colágeno/química , Humanos , Simulação de Dinâmica Molecular
8.
Nano Lett ; 24(1): 67-73, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38149785

RESUMO

Two-dimensional transition metal nitrides offer intriguing possibilities for achieving novel electronic and mechanical functionality owing to their distinctive and tunable bonding characteristics compared to other 2D materials. We demonstrate here the enabling effects of strong bonding on the morphology and functionality of 2D tungsten nitrides. The employed bottom-up synthesis experienced a unique substrate stabilization effect beyond van-der-Waals epitaxy that favored W5N6 over lower metal nitrides. Comprehensive structural and electronic characterization reveals that monolayer W5N6 can be synthesized at large scale and shows semimetallic behavior with an intriguing indirect band structure. Moreover, the material exhibits exceptional resilience against mechanical damage and chemical reactions. Leveraging these electronic properties and robustness, we demonstrate the application of W5N6 as atomic-scale dry etch stops that allow the integration of high-performance 2D materials contacts. These findings highlight the potential of 2D transition metal nitrides for realizing advanced electronic devices and functional interfaces.

9.
Proteomics ; 24(9): e2300257, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38263811

RESUMO

With the notable surge in therapeutic peptide development, various peptides have emerged as potential agents against virus-induced diseases. Viral entry inhibitory peptides (VEIPs), a subset of antiviral peptides (AVPs), offer a promising avenue as entry inhibitors (EIs) with distinct advantages over chemical counterparts. Despite this, a comprehensive analytical platform for characterizing these peptides and their effectiveness in blocking viral entry remains lacking. In this study, we introduce a groundbreaking in silico approach that leverages bioinformatics analysis and machine learning to characterize and identify novel VEIPs. Cross-validation results demonstrate the efficacy of a model combining sequence-based features in predicting VEIPs with high accuracy, validated through independent testing. Additionally, an EI type model has been developed to distinguish peptides specifically acting as Eis from AVPs with alternative activities. Notably, we present iDVEIP, a web-based tool accessible at http://mer.hc.mmh.org.tw/iDVEIP/, designed for automatic analysis and prediction of VEIPs. Emphasizing its capabilities, the tool facilitates comprehensive analyses of peptide characteristics, providing detailed amino acid composition data for each prediction. Furthermore, we showcase the tool's utility in identifying EIs against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).


Assuntos
Antivirais , Biologia Computacional , Aprendizado de Máquina , Peptídeos , SARS-CoV-2 , Internalização do Vírus , Internalização do Vírus/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Humanos , Peptídeos/química , Peptídeos/farmacologia , Biologia Computacional/métodos , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Simulação por Computador , COVID-19/virologia , Software
10.
Gene Ther ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232211

RESUMO

SLC26A4 encodes pendrin, a crucial anion exchanger essential for maintaining hearing function. Mutations in SLC26A4, including the prevalent c.919-2 A > G splice-site mutation among East Asian individuals, can disrupt inner ear electrolyte balance, leading to syndromic and non-syndromic hearing loss, such as Pendred syndrome and DFNB4. To explore potential therapeutic strategies, we utilized CRISPR/Cas9-mediated exon skipping to create a Slc26a4∆E8+E9/∆E8+E9 mouse model. We assessed pendrin expression in the inner ear and evaluated vestibular and auditory functions. The Slc26a4∆E8+E9/∆E8+E9 mice demonstrated reframed pendrin in the inner ear and normal vestibular functions, contrasting with severely abnormal vestibular functions observed in the Slc26a4 c.919-2 A > G splicing mutation mouse model. However, despite these molecular achievements, hearing function did not show the expected improvement, consistent with observed pathology, including cochlear hair cell loss and elevated hearing thresholds. Consequently, our findings highlight the necessity for alternative genetic editing strategies to address hearing loss caused by the SLC26A4 c.919-2 A > G mutation.

11.
Br J Cancer ; 131(3): 534-550, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38890444

RESUMO

BACKGROUND: Identification of driver mutations and development of targeted therapies has considerably improved outcomes for lung cancer patients. However, significant limitations remain with the lack of identified drivers in a large subset of patients. Here, we aimed to assess the genomic landscape of lung adenocarcinomas (LUADs) from individuals without a history of tobacco use to reveal new genetic drivers of lung cancer. METHODS: Integrative genomic analyses combining whole-exome sequencing, copy number, and mutational information for 83 LUAD tumors was performed and validated using external datasets to identify genetic variants with a predicted functional consequence and assess association with clinical outcomes. LUAD cell lines with alteration of identified candidates were used to functionally characterize tumor suppressive potential using a conditional expression system both in vitro and in vivo. RESULTS: We identified 21 genes with evidence of positive selection, including 12 novel candidates that have yet to be characterized in LUAD. In particular, SNF2 Histone Linker PHD RING Helicase (SHPRH) was identified due to its frequency of biallelic disruption and location within the familial susceptibility locus on chromosome arm 6q. We found that low SHPRH mRNA expression is associated with poor survival outcomes in LUAD patients. Furthermore, we showed that re-expression of SHPRH in LUAD cell lines with inactivating alterations for SHPRH reduces their in vitro colony formation and tumor burden in vivo. Finally, we explored the biological pathways associated SHPRH inactivation and found an association with the tolerance of LUAD cells to DNA damage. CONCLUSIONS: These data suggest that SHPRH is a tumor suppressor gene in LUAD, whereby its expression is associated with more favorable patient outcomes, reduced tumor and mutational burden, and may serve as a predictor of response to DNA damage. Thus, further exploration into the role of SHPRH in LUAD development may make it a valuable biomarker for predicting LUAD risk and prognosis.


Assuntos
Adenocarcinoma de Pulmão , Dano ao DNA , Genes Supressores de Tumor , Neoplasias Pulmonares , Animais , Feminino , Humanos , Masculino , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Dano ao DNA/genética , Sequenciamento do Exoma , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação
12.
Hum Brain Mapp ; 45(4): e26640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445545

RESUMO

Voxel-based morphometry (VBM) and surface-based morphometry (SBM) are two widely used neuroimaging techniques for investigating brain anatomy. These techniques rely on statistical inferences at individual points (voxels or vertices), clusters of points, or a priori regions-of-interest. They are powerful tools for describing brain anatomy, but offer little insights into the generative processes that shape a particular set of findings. Moreover, they are restricted to a single spatial resolution scale, precluding the opportunity to distinguish anatomical variations that are expressed across multiple scales. Drawing on concepts from classical physics, here we develop an approach, called mode-based morphometry (MBM), that can describe any empirical map of anatomical variations in terms of the fundamental, resonant modes-eigenmodes-of brain anatomy, each tied to a specific spatial scale. Hence, MBM naturally yields a multiscale characterization of the empirical map, affording new opportunities for investigating the spatial frequency content of neuroanatomical variability. Using simulated and empirical data, we show that the validity and reliability of MBM are either comparable or superior to classical vertex-based SBM for capturing differences in cortical thickness maps between two experimental groups. Our approach thus offers a robust, accurate, and informative method for characterizing empirical maps of neuroanatomical variability that can be directly linked to a generative physical process.


Assuntos
Encéfalo , Neuroanatomia , Humanos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Cabeça , Neuroimagem
13.
BMC Plant Biol ; 24(1): 307, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644483

RESUMO

BACKGROUND: Luffa (Luffa spp.) is an economically important crop of the Cucurbitaceae family, commonly known as sponge gourd or vegetable gourd. It is an annual cross-pollinated crop primarily found in the subtropical and tropical regions of Asia, Australia, Africa, and the Americas. Luffa serves not only as a vegetable but also exhibits medicinal properties, including anti-inflammatory, antidiabetic, and anticancer effects. Moreover, the fiber derived from luffa finds extensive applications in various fields such as biotechnology and construction. However, luffa Fusarium wilt poses a severe threat to its production, and existing control methods have proven ineffective in terms of cost-effectiveness and environmental considerations. Therefore, there is an urgent need to develop luffa varieties resistant to Fusarium wilt. Single-plant GWAS (sp-GWAS) has been demonstrated as a promising tool for the rapid and efficient identification of quantitative trait loci (QTLs) associated with target traits, as well as closely linked molecular markers. RESULTS: In this study, a collection of 97 individuals from 73 luffa accessions including two major luffa species underwent single-plant GWAS to investigate luffa Fusarium wilt resistance. Utilizing the double digest restriction site associated DNA (ddRAD) method, a total of 8,919 high-quality single nucleotide polymorphisms (SNPs) were identified. The analysis revealed the potential for Fusarium wilt resistance in accessions from both luffa species. There are 6 QTLs identified from 3 traits, including the area under the disease progress curve (AUDPC), a putative disease-resistant QTL, was identified on the second chromosome of luffa. Within the region of linkage disequilibrium, a candidate gene homologous to LOC111009722, which encodes peroxidase 40 and is associated with disease resistance in Cucumis melo, was identified. Furthermore, to validate the applicability of the marker associated with resistance from sp-GWAS, an additional set of 21 individual luffa plants were tested, exhibiting 93.75% accuracy in detecting susceptible of luffa species L. aegyptiaca Mill. CONCLUSION: In summary, these findings give a hint of genome position that may contribute to luffa wild resistance to Fusarium and can be utilized in the future luffa wilt resistant breeding programs aimed at developing wilt-resistant varieties by using the susceptible-linked SNP marker.


Assuntos
Resistência à Doença , Fusarium , Estudo de Associação Genômica Ampla , Luffa , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fusarium/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Luffa/genética , Luffa/microbiologia , Genoma de Planta , Marcadores Genéticos , Variação Genética
14.
Small ; : e2401755, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698572

RESUMO

Infrared and radar detectors posed substantial challenges to weapon equipment and personnel due to their continuous surveillance and reconnaissance capabilities. Traditional single-band stealth devices are insufficient for dual-band detection in both infrared and microwave bands. To overcome this limitation, a gradient-structured MXene/reduced graphene oxide (rGO) composite aerogel (GMXrGA) is fabricated through a two-step bidirectional freeze casting process, followed by freeze-drying and thermal annealing. GMXrGA exhibits a distinct three-layered structure, with each layer playing a crucial role in microwave absorption. This deliberate design amplifies both the efficiency of microwave absorption and the material's effectiveness in dynamic infrared camouflage. GMXrGA displays an ultralow density of 5.2 mg∙cm-3 and demonstrates exceptional resistance to compression, enduring 200 cycles at a maximum strain of 80%. Moreover, it shows superior microwave absorption performance, with a minimum reflection loss (RLmin) of -60.1 dB at a broad effective absorption bandwidth (EAB) of 14.1 GHz (3.9-18.0 GHz). Additionally, the aerogel exhibits low thermal conductivity (≈26 mW∙m-1∙K-1) and displays dynamic infrared camouflage capabilities within the temperature range of 50-120 °C, achieving rapid concealment within 30 s. Consequently, they hold great potential for diverse applications, including intelligent buildings, wearable electronics, and weapon equipment.

15.
Small ; 20(22): e2311209, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098342

RESUMO

Two-dimensional (2D) materials are promising successors for silicon transistor channels in ultimately scaled devices, necessitating significant research efforts to study their behavior at nanoscopic length scales. Unfortunately, current research has limited itself to direct patterning approaches, which limit the achievable resolution to the diffraction limit and introduce unwanted defects into the 2D material. The potential of multi-patterning to fabricate 2D materials features with unprecedented precision and low complexity at large scale is demonstrated here. By combining lithographic patterning of a mandrel and bottom-up self-expansion, this approach enables pattern resolution one order of magnitude below the lithographical resolution. In-depth characterization of the self-expansion double patterning (SEDP) process reveals the ability to manipulate the critical dimension with nanometer precision through a self-limiting and temperature-controlled oxidation process. These results indicate that the SEDP process can regain the quality and morphology of the 2D material, as shown by high-resolution microscopy and optical spectroscopy. This approach is shown to open up new avenues for research into high-performance, ultra-scaled 2D materials devices for future electronics.

16.
Mol Phylogenet Evol ; 200: 108176, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39128794

RESUMO

Silkmoths (Bombycidae) have a disjunct distribution predominantly in the Southern Hemisphere and Asia. Here we reconstruct the phylogenetic history of the family to test competing hypotheses on their origin and assess how vicariance and long-distance dispersal shaped their current distribution. We sequenced up to 5,074 base pairs from six loci (COI, EF1-α, wgl, CAD, GAPDH, and RpS5) to infer the historical biogeography of Bombycidae. The multilocus dataset covering 20 genera (80 %) of the family, including 17 genera (94 %) of Bombycinae and 3 genera (43 %) of Epiinae, was used to estimate phylogenetic patterns, divergence times and biogeographic reconstruction. Dating estimates extrapolated from secondary calibration sources indicate the Bombycidae stem-group originated approximately 64 Mya. The subfamilies Epiinae (South America) and Bombycinae (Australia, Asia, East Palaearctic, and Africa) were reciprocally monophyletic, diverging at c. 56 Mya (95 % credibility interval: 66-46 Mya). The 'basal' lineage of Bombycinae - Gastridiota + Elachyophtalma - split from the rest of Bombycinae c. 53 Mya (95 % credibility interval: 63-43 Mya). Gastridiota is a monobasic genus with a relictual distribution in subtropical forests of eastern Australia. The Oriental and African genera comprised a monophyletic group: the Oriental region was inferred to have been colonized from a long-distance dispersal event from Australia to South-East Asia c. 53 Mya or possibly later (c. 36-26 Mya); Africa was subsequently colonized by dispersal from Asia c. 16 Mya (95 % credibility interval: 21-12 Mya). Based on the strongly supported phylogenetic relationships and estimates of divergence times, we conclude that Bombycidae had its origin in the fragment of Southern Gondwana consisting of Australia, Antarctica and South America during the Paleocene. The disjunction between South America (Epiinae) and Australia (Bombycinae) is best explained by vicariance in the Eocene, whereas the disjunct distribution in Asia and Africa is best explained by more recent dispersal events.


Assuntos
Filogenia , Filogeografia , Animais , Teorema de Bayes , Análise de Sequência de DNA , DNA Mitocondrial/genética , Mariposas/genética , Mariposas/classificação , Evolução Molecular , Modelos Genéticos
17.
Dev Growth Differ ; 66(2): 133-144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38281811

RESUMO

Macrophages play a pivotal role in the response to injury, contributing significantly to the repair and regrowth of damaged tissues. The external lateral line system in aquatic organisms offers a practical model for studying regeneration, featuring interneuromast cells connecting sensory neuromasts. Under normal conditions, these cells remain dormant, but their transformation into neuromasts occurs when overcoming inhibitory signals from Schwann cells and posterior lateral line nerves. The mechanism enabling interneuromast cells to evade inhibition by Schwann cells remains unclear. Previous observations suggest that macrophages physically interact with neuromasts, nerves, and Schwann cells during regeneration. This interaction leads to the regeneration of neuromasts in a subset of zebrafish with ablated neuromasts. To explore whether macrophages achieve this effect through secreted cytokines, we conducted experiments involving tail amputation in zebrafish larvae and tested the impact of cytokine inhibitors on neuromast regeneration. Most injured larvae remarkably regenerated a neuromast within 4 days post-amputation. Intriguingly, removal of macrophages and inhibition of the anti-inflammatory cytokine transforming growth factor-beta (TGF-ß) significantly delayed neuromast regeneration. Conversely, inhibition of the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) had minor effects on the regeneration process. This study provides insights into how macrophages activate interneuromast cells, elucidating the pathways underlying neuromast regeneration.


Assuntos
Sistema da Linha Lateral , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Fator de Crescimento Transformador beta/farmacologia
18.
Cytotherapy ; 26(8): 890-898, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38625070

RESUMO

BACKGROUND: Adipose-derived stem cells (ASCs) are recognized for their potential immunomodulatory properties. In the immune system, tolerogenic dendritic cells (DCs), characterized by an immature phenotype, play a crucial role in inducing regulatory T cells (Tregs) and promoting immune tolerance. Notch1 signaling has been identified as a key regulator in the development and function of DCs. However, the precise involvement of Notch1 pathway in ASC-mediated modulation of tolerogenic DCs and its impact on immune modulation remain to be fully elucidated. This study aims to investigate the interplay between ASCs and DCs, focusing the role of Notch1 signaling and downstream pathways in ASC-modulated tolerogenic DCs. METHODS: Rat bone marrow-derived myeloid DCs were directly co-cultured with ASCs to generate ASC-treated DCs (ASC-DCs). Notch signaling was inhibited using DAPT, while NFκB pathways were inhibited by NEMO binding domain peptide and si-NIK. Flow cytometry assessed DC phenotypes. Real-time quantitative PCR, Western blotting and immunofluorescence determined the expression of Notch1, Jagged1 and the p52/RelB complex in ASC- DCs. RESULTS: Notch1 and Jagged1 were highly expressed on both DCs and ASCs. ASC-DCs displayed significantly reduced levels of CD80, CD86 and MHC II compared to mature DCs. Inhibiting the Notch pathway with DAPT reversed the dedifferentiation effects. The percentage of induced CD25+/FOXP3+/CD4+ Tregs decreased when ASC-DCs were treated with DAPT (inhibition of the Notch pathway) and si-NIK (inhibition of the non-canonical NFκB pathway). CONCLUSIONS: ASCs induce DC tolerogenicity by inhibiting maturation and promoting downstream Treg generation, involving the Notch and NFκB pathways. ASC-induced tolerogenic DCs can be a potential immunomodulatory tool for clinical application.


Assuntos
Células Dendríticas , Tolerância Imunológica , NF-kappa B , Transdução de Sinais , Linfócitos T Reguladores , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , NF-kappa B/metabolismo , Ratos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Receptor Notch1/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Proteína Jagged-1/metabolismo , Técnicas de Cocultura , Células-Tronco/metabolismo , Células-Tronco/citologia , Diferenciação Celular
19.
Diabetes Metab Res Rev ; 40(2): e3739, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37862117

RESUMO

AIMS: Sodium-glucose cotransporter-2 inhibitors (SGLT-2i) have off-target effects on haemoconcentration and anti-inflammation. The impact of SGLT-2i on the risk of venous thromboembolism (VTE) in patients with diabetes mellitus (DM) remains unclear. This study aimed to evaluate the risk of newly diagnosed VTE in patients with DM using SGLT-2i in comparison to dipeptidyl peptidase-4 inhibitors (DPP-4i) or glucagon-like peptide-1 receptor agonists (GLP-1RA). MATERIALS AND METHODS: In this nationwide retrospective cohort study, we used data from Taiwan's National Health Insurance Research Database. Patients with diabetes aged 20 years or older who received SGLT-2i, DPP-4i, or GLP-1RA between 1 May 2016, and 31 December 2020, were included. The risks of VTE in SGLT-2i users were compared with those of DPP-4i and GLP-1RA users. A Cox regression model with stabilised inverse probability of treatment weighting was used to calculate hazard ratio (HR) for VTE risk. Additionally, a meta-analysis of relevant articles published before 23 May 2023, was conducted. RESULTS: Data from 136,530 SGLT-2i, 598,280 DPP-4i, and 5760 GLP-1RA users were analysed. SGLT-2i use was associated with a lower risk of VTE than DPP-4i (HR, 0.70; 95% CI, 0.59-0.84; p < 0·001), but not with GLP-1RA (HR, 1.39; 95% CI, 0.32-5.94; p = 0.66). Our meta-analysis further supported these findings (SGLT-2i vs. DPP-4i: HR, 0.71; 95% CI, 0.62-0.82; p < 0·001; SGLT-2i vs. GLP-1RA: HR, 0.91; 95% CI, 0.73-1.15; p = 0.43), suggesting the robustness of our retrospective analysis. CONCLUSIONS: In patients with DM, SGLT-2i was associated with a lower risk of VTE compared to DPP-4i, but not GLP-1RA.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Inibidores do Transportador 2 de Sódio-Glicose , Simportadores , Tromboembolia Venosa , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Hipoglicemiantes/efeitos adversos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Tromboembolia Venosa/induzido quimicamente , Tromboembolia Venosa/epidemiologia , Estudos Retrospectivos , Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Glucose , Sódio , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
20.
Mov Disord ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934216

RESUMO

Neuroimaging studies in rapid eye movement sleep behavior disorder (RBD) can inform fundamental questions about the pathogenesis of Parkinson's disease (PD). Across modalities, functional magnetic resonance imaging (fMRI) may be better suited to identify changes between neural networks in the earliest stages of Lewy body diseases when structural changes may be subtle or absent. This review synthesizes the findings from all fMRI studies of RBD to gain further insight into the pathophysiology and progression of Lewy body diseases. A total of 32 studies were identified using a systematic review conducted according to PRISMA guidelines between January 2000 to February 2024 for original fMRI studies in patients with either isolated RBD (iRBD) or RBD secondary to PD. Common functional alterations were detectable in iRBD patients compared with healthy controls across brainstem nuclei, basal ganglia, frontal and occipital lobes, and whole brain network measures. Patients with established PD and RBD demonstrated decreased functional connectivity across the whole brain and brainstem nuclei, but increased functional connectivity in the cerebellum and frontal lobe compared with those PD patients without RBD. Finally, longitudinal changes in resting state functional connectivity were found to track with disease progression. Currently, fMRI studies in RBD have demonstrated early signatures of neurodegeneration across both motor and non-motor pathways. Although more work is needed, such findings have the potential to inform our understanding of disease, help to distinguish between prodromal PD and prodromal dementia with Lewy bodies, and support the development of fMRI-based outcome measures of phenoconversion and progression in future disease modifying trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA