RESUMO
Defining the oxygen level that induces cell death within 3-D tissues is vital for understanding tissue hypoxia; however, obtaining accurate measurements has been technically challenging. In this study, we introduce a noninvasive, high-throughput methodology to quantify critical survival partial oxygen pressure (pO2) with high spatial resolution within spheroids by using a combination of controlled hypoxic conditions, semiautomated live/dead cell imaging, and computational oxygen modeling. The oxygen-permeable, micropyramid patterned culture plates created a precisely controlled oxygen condition around the individual spheroid. Live/dead cell imaging provided the geometric information of the live/dead boundary within spheroids. Finally, computational oxygen modeling calculated the pO2 at the live/dead boundary within spheroids. As proof of concept, we determined the critical survival pO2 in two types of spheroids: isolated primary pancreatic islets and tumor-derived pseudoislets (2.43 ± 0.08 vs. 0.84 ± 0.04 mmHg), indicating higher hypoxia tolerance in pseudoislets due to their tumorigenic origin. We also applied this method for evaluating graft survival in cell transplantations for diabetes therapy, where hypoxia is a critical barrier to successful transplantation outcomes; thus, designing oxygenation strategies is required. Based on the elucidated critical survival pO2, 100% viability could be maintained in a typically sized primary islet under the tissue pO2 above 14.5 mmHg. This work presents a valuable tool that is potentially instrumental for fundamental hypoxia research. It offers insights into physiological responses to hypoxia among different cell types and may refine translational research in cell therapies.NEW & NOTEWORTHY Our study introduces an innovative combinatory approach for noninvasively determining the critical survival oxygen level of cells within small cell spheroids, which replicates a 3-D tissue environment, by seamlessly integrating three pivotal techniques: cell death induction under controlled oxygen conditions, semiautomated imaging that precisely identifies live/dead cells, and computational modeling of oxygen distribution. Notably, our method ensures high-throughput analysis applicable to various cell types, offering a versatile solution for researchers in diverse fields.
Assuntos
Ilhotas Pancreáticas , Oxigênio , Humanos , Oxigênio/metabolismo , Hipóxia/metabolismo , Ilhotas Pancreáticas/metabolismo , Esferoides Celulares/metabolismo , Hipóxia Celular , Sobrevivência CelularRESUMO
OBJECTIVE: Reports of tuberculosis (TB) during anticancer treatment with immune checkpoint inhibitors (ICIs) are increasing. However, it is not clear whether the use of ICIs is a significant risk factor for TB, including reactivation or latent TB infection (LTBI). METHODS: To determine the risk of TB reactivation in patients with lung cancer who use ICIs or tyrosine kinase inhibitors (TKIs), we conducted a retrospective study using a hospital-based cancer registry. In addition, we monitored patients with cancer using ICI or TKI in a multicenter prospective study to check the incidence of LTBI. RESULTS: In the retrospective study, several demographic factors were imbalanced between the ICI and TKI groups: the ICI group was younger, had more males, exhibited more squamous cell carcinoma in histology rather than adenocarcinoma, had fewer EGFR mutations, and received more chemotherapy. Propensity score matching was used to control for confounding factors, and we found that the incidence of TB was higher among patients with lung cancer who received ICIs than among those who received TKIs (2298 vs 412 per 100 000 person-years, Pâ =â .0165). Through multivariable analysis, group (ICI vs TKI) was the independent risk factor for TB development (adjusted hazard ratio (aHR): 6.29, 95% CI, 1.23-32.09, Pâ =â .0269). In the prospective cohort, which included 72 patients receiving ICIs and 50 receiving TKIs, we found that the incidence of positive seroconversion of LTBI by interferon gamma release assay (IGRA) was significantly higher in patients receiving ICIs (18% vs 0%, aHR: 9.88, Pâ =â 0.035) under multivariable Cox regression. CONCLUSION: The use of ICIs may be linked to a higher likelihood of TB reactivation and LTBI than individuals solely receiving TKIs as anticancer therapy. Consequently, the implementation of a screening program for TB reactivation and LTBI among patients undergoing ICI treatment could prove advantageous by enabling early detection and prompt treatment of the infection.
Assuntos
Neoplasias Pulmonares , Tuberculose , Humanos , Masculino , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Estudos Prospectivos , Estudos Retrospectivos , Tuberculose/induzido quimicamente , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , FemininoRESUMO
Obesity is a metabolic disorder closely associated with profound alterations in gut microbial composition. However, the dynamics of species composition and functional changes in the gut microbiome in obesity remain to be comprehensively investigated. In this study, we conducted a meta-analysis of metagenomic sequencing data from both obese and non-obese individuals across multiple cohorts, totaling 1351 fecal metagenomes. Our results demonstrate a significant decrease in both the richness and diversity of the gut bacteriome and virome in obese patients. We identified 38 bacterial species including Eubacterium sp. CAG:274, Ruminococcus gnavus, Eubacterium eligens and Akkermansia muciniphila, and 1 archaeal species, Methanobrevibacter smithii, that were significantly altered in obesity. Additionally, we observed altered abundance of five viral families: Mesyanzhinovviridae, Chaseviridae, Salasmaviridae, Drexlerviridae, and Casjensviridae. Functional analysis of the gut microbiome indicated distinct signatures associated to obesity and identified Ruminococcus gnavus as the primary driver for function enrichment in obesity, and Methanobrevibacter smithii, Akkermansia muciniphila, Ruminococcus bicirculans, and Eubacterium siraeum as functional drivers in the healthy control group. Additionally, our results suggest that antibiotic resistance genes and bacterial virulence factors may influence the development of obesity. Finally, we demonstrated that gut vOTUs achieved a diagnostic accuracy with an optimal area under the curve of 0.766 for distinguishing obesity from healthy controls. Our findings offer comprehensive and generalizable insights into the gut bacteriome and virome features associated with obesity, with the potential to guide the development of microbiome-based diagnostics.
Assuntos
Clostridiales , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Obesidade/microbiologia , Bactérias/genética , Fezes/microbiologia , AkkermansiaRESUMO
INTRODUCTION: In real-world practice, most non-small cell lung cancer (NSCLC) patients receiving combined immunochemotherapy are exposed to short-course corticosteroids following immune checkpoint inhibitor (ICI) infusion to prevent chemotherapy-related adverse events. However, whether this early short-course corticosteroid use prevents immune-related adverse events (irAEs) remains unknown. METHODS: Between January 1st, 2015, and December 31st, 2020, NSCLC patients who received at least one cycle of ICI with or without chemotherapy were enrolled. Early short-course corticosteroids were defined as corticosteroids administered following ICI injection and before chemotherapy on the same day and no longer than 3 days afterward. The patients were categorized as either "corticosteroid group" or "non-corticosteroid group" depending on their exposure to early short-course corticosteroid. The frequencies of irAEs requiring systemic corticosteroid use and irAEs leading to ICI discontinuation were compared between the two groups, and exploratory survival analyses were performed. RESULTS: Among 252 eligible patients, 137 patients were categorized as "corticosteroid group" and 115 patients as "non-corticosteroid group." The corticosteroid group enriched patients in the first-line setting (n = 75, 54.7%), compared to the non-corticosteroid group (n = 28, 24.3%). Thirty patients (21.9%) in the corticosteroid group and 35 patients (30.4%) in the non-corticosteroid group developed irAEs requiring systemic corticosteroid use (odds ratio [OR], 0.64; 95% confidence interval [CI], 0.35-1.18; p = 0.15). Eight patients (5.8%) in the corticosteroid group, as compared with 18 patients (15.7%) in the non-corticosteroid group, permanently discontinued ICI due to irAEs (OR, 0.34; 95% CI, 0.12-0.85; p = 0.013). CONCLUSION: Early short-course corticosteroids following each ICI injection may reduce the rate of irAEs that lead to ICIs discontinuation, warranting further investigation of its prophylactic use to mitigate clinically significant irAEs.
Assuntos
Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos Imunológicos/efeitos adversos , Estudos Retrospectivos , Corticosteroides/efeitos adversosRESUMO
BACKGROUND: Although electronic nose (eNose) has been intensively investigated for diagnosing lung cancer, cross-site validation remains a major obstacle to be overcome and no studies have yet been performed. METHODS: Patients with lung cancer, as well as healthy control and diseased control groups, were prospectively recruited from two referral centers between 2019 and 2022. Deep learning models for detecting lung cancer with eNose breathprint were developed using training cohort from one site and then tested on cohort from the other site. Semi-Supervised Domain-Generalized (Semi-DG) Augmentation (SDA) and Noise-Shift Augmentation (NSA) methods with or without fine-tuning was applied to improve performance. RESULTS: In this study, 231 participants were enrolled, comprising a training/validation cohort of 168 individuals (90 with lung cancer, 16 healthy controls, and 62 diseased controls) and a test cohort of 63 individuals (28 with lung cancer, 10 healthy controls, and 25 diseased controls). The model has satisfactory results in the validation cohort from the same hospital while directly applying the trained model to the test cohort yielded suboptimal results (AUC, 0.61, 95% CI: 0.47â0.76). The performance improved after applying data augmentation methods in the training cohort (SDA, AUC: 0.89 [0.81â0.97]; NSA, AUC:0.90 [0.89â1.00]). Additionally, after applying fine-tuning methods, the performance further improved (SDA plus fine-tuning, AUC:0.95 [0.89â1.00]; NSA plus fine-tuning, AUC:0.95 [0.90â1.00]). CONCLUSION: Our study revealed that deep learning models developed for eNose breathprint can achieve cross-site validation with data augmentation and fine-tuning. Accordingly, eNose breathprints emerge as a convenient, non-invasive, and potentially generalizable solution for lung cancer detection. CLINICAL TRIAL REGISTRATION: This study is not a clinical trial and was therefore not registered.
Assuntos
Aprendizado Profundo , Nariz Eletrônico , Neoplasias Pulmonares , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Respiratórios/métodos , Neoplasias Pulmonares/diagnóstico , Estudos Prospectivos , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Airflow obstruction is a hallmark of disease severity and prognosis in bronchiectasis. The relationship between lung microbiota, airway inflammation, and outcomes in bronchiectasis with fixed airflow obstruction (FAO) remains unclear. This study explores these interactions in bronchiectasis patients, with and without FAO, and compares them to those diagnosed with chronic obstructive pulmonary disease (COPD). METHODS: This prospective observational study in Taiwan enrolled patients with either bronchiectasis or COPD. To analyze the lung microbiome and assess inflammatory markers, bronchoalveolar lavage (BAL) samples were collected for 16S rRNA gene sequencing. The study cohort comprised 181 patients: 86 with COPD, 46 with bronchiectasis, and 49 with bronchiectasis and FAO, as confirmed by spirometry. RESULTS: Patients with bronchiectasis, with or without FAO, had similar microbiome profiles characterized by reduced alpha diversity and a predominance of Proteobacteria, distinctly different from COPD patients who exhibited more Firmicutes, greater diversity, and more commensal taxa. Furthermore, compared to COPD and bronchiectasis without FAO, bronchiectasis with FAO showed more severe disease and a higher risk of exacerbations. A significant correlation was found between the presence of Pseudomonas aeruginosa and increased airway neutrophilic inflammation such as Interleukin [IL]-1ß, IL-8, and tumor necrosis factor-alpha [TNF]-α, as well as with higher bronchiectasis severity, which might contribute to an increased risk of exacerbations. Moreover, in bronchiectasis patients with FAO, the ROSE (Radiology, Obstruction, Symptoms, and Exposure) criteria were employed to classify individuals as either ROSE (+) or ROSE (-), based on smoking history. This classification highlighted differences in clinical features, inflammatory profiles, and slight microbiome variations between ROSE (-) and ROSE (+) patients, suggesting diverse endotypes within the bronchiectasis with FAO group. CONCLUSION: Bronchiectasis patients with FAO may exhibit two distinct endotypes, as defined by ROSE criteria, characterized by greater disease severity and a lung microbiome more similar to bronchiectasis without FAO than to COPD. The significant correlation between Pseudomonas aeruginosa colonization and increased airway neutrophilic inflammation, as well as disease severity, underscores the clinical relevance of microbial patterns. This finding reinforces the potential role of these patterns in the progression and exacerbations of bronchiectasis with FAO.
Assuntos
Bronquiectasia , Pulmão , Microbiota , Humanos , Bronquiectasia/microbiologia , Bronquiectasia/diagnóstico , Feminino , Masculino , Estudos Prospectivos , Microbiota/fisiologia , Pessoa de Meia-Idade , Idoso , Pulmão/microbiologia , Pulmão/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Estudos de Coortes , Taiwan/epidemiologiaRESUMO
PURPOSE: The potential efficacy of metformin in breast cancer (BC) has been hotly discussed but never conclusive. This genetics-based study aimed to evaluate the relationships between metformin targets and BC risk. METHODS: Metformin targets from DrugBank and genome-wide association study (GWAS) data from IEU OpenGWAS and FinnGen were used to investigate the breast cancer (BC)-metformin causal link with various Mendelian Randomization (MR) methods (e.g., inverse-variance-weighting). The genetic association between type 2 diabetes (T2D) and the drug target of metformin was also analyzed as a positive control. Sensitivity and pleiotropic tests ensured reliability. RESULTS: The primary targets of metformin are PRKAB1, ETFDH and GPD1L. We found a causal association between PRKAB1 and T2D (odds ratio [OR] 0.959, P = 0.002), but no causal relationship was observed between metformin targets and overall BC risk (PRKAB1: OR 0.990, P = 0.530; ETFDH: OR 0.986, P = 0.592; GPD1L: OR 1.002, P = 0.806). A noteworthy causal relationship was observed between ETFDH and estrogen receptor (ER)-positive BC (OR 0.867, P = 0.018), and between GPD1L and human epidermal growth factor receptor 2 (HER2)-negative BC (OR 0.966, P = 0.040). Other group analyses did not yield positive results. CONCLUSION: The star target of metformin, PRKAB1, does not exhibit a substantial causal association with the risk of BC. Conversely, metformin, acting as an inhibitor of ETFDH and GPD1L, may potentially elevate the likelihood of developing ER-positive BC and HER2-negative BC. Consequently, it is not advisable to employ metformin as a standard supplementary therapy for BC patients without T2D.
Assuntos
Neoplasias da Mama , Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Metformina , Humanos , Metformina/uso terapêutico , Metformina/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Feminino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Quimioterapia Adjuvante/métodos , Hipoglicemiantes/uso terapêutico , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Neuroinflammation and endothelial cell apoptosis are prominent features of blood-brain barrier (BBB) disruption, which have been described in Alzheimer's disease (AD) and can predict cognitive decline. Recent reports revealed vascular ß-amyloid (Aß) deposits, Muller cell degeneration and microglial dysfunction in the retina of AD patients. However, there has been no in-depth research on the roles of inflammation, retinal endothelial cell apoptosis, and blood-retinal barrier (BRB) damage in AD retinopathy. We found that Raddeanin A (RDA) could improve pathological and cognitive deficits in a mouse model of Alzheimer's disease by targeting ß-amyloidosis, However, the effects of RDA on AD retinal function require further study. To clarify whether RDA inhibits inflammation and apoptosis and thus improves BRB function in AD-related retinopathy. In vitro we used Aß-treated HRECs and MIO-M1 cells, and in vivo we used 3×Tg-AD mice to investigate the effect of RDA on BRB in AD-related retinopathy. We found that RDA could improve BRB function in AD-related retinopathy by inhibiting NLRP3-mediated inflammation and suppressing Wnt/ß-catenin pathway-mediated apoptosis, which is expected to improve the pathological changes in AD-related retinopathy and the quality of life of AD patients.
Assuntos
Doença de Alzheimer , Apoptose , Barreira Hematorretiniana , Camundongos Transgênicos , Retina , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Apoptose/efeitos dos fármacos , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Camundongos , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Camundongos Endogâmicos C57BL , Humanos , Peptídeos beta-Amiloides/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , MasculinoRESUMO
BACKGROUND AND AIM: Helicobacter pylori infection is linked to various gastrointestinal conditions, such as chronic active gastritis, peptic ulcers, and gastric cancer. Traditional treatment options encounter difficulties due to antibiotic resistance and adverse effects. Therefore, the aim of this study was to explore the effectiveness of a new treatment plan that combines vonoprazan (VPZ), amoxicillin, and bismuth for the eradication of H. pylori. METHODS: A total of 600 patients infected with H. pylori were recruited for this multicenter randomized controlled trial. Patients treated for H. pylori elimination were randomly assigned at a 1:1 ratio to receive 14 days of vonoprazan-based triple therapy (vonoprazan + amoxicillin + bismuth, group A) or standard quadruple therapy (esomeprazole + clarithromycin + amoxicillin + bismuth, group B). Compliance and adverse effects were tracked through daily medication and side effect records. All patients underwent a 13C/14C-urea breath test 4 weeks after treatment completion. RESULTS: Intention-to-treat (ITT) and per-protocol (PP) analyses revealed no substantial differences in H. pylori eradication rates between groups A and B (ITT: 83.7% vs 83.2%; PP: 90.9% vs 89.7%). However, significant differences were observed in the assessment of side effects (13.7% vs 28.6%, P < 0.001). Specifically, group A had significantly fewer "bitter mouths" than group B did (3.7% vs 16.2%, P < 0.001). CONCLUSION: Triple therapy comprising vonoprazan (20 mg), amoxicillin (750 mg), and bismuth potassium citrate (220 mg) achieved a PP eradication rate ≥90%, paralleling standard quadruple therapy, and had fewer adverse events and lower costs (¥306.8 vs ¥645.8) for treatment-naive patients.
RESUMO
PURPOSE: Bronchiectasis is predominantly marked by neutrophilic inflammation. The relevance of type 2 biomarkers in disease severity and exacerbation risk is poorly understood. This study explores the clinical significance of these biomarkers in bronchiectasis patients. METHODS: In a cross-sectional cohort study, bronchiectasis patients, excluding those with asthma or allergic bronchopulmonary aspergillosis, underwent clinical and radiological evaluations. Bronchoalveolar lavage samples were analyzed for cytokines and microbiology. Blood eosinophil count (BEC), serum total immunoglobulin E (IgE), and fractional exhaled nitric oxide (FeNO) were measured during stable disease states. Positive type 2 biomarkers were defined by established thresholds for BEC, total IgE, and FeNO. RESULTS: Among 130 patients, 15.3% demonstrated BEC ≥ 300 cells/µL, 26.1% showed elevated FeNO ≥ 25 ppb, and 36.9% had high serum total IgE ≥ 75 kU/L. Approximately 60% had at least one positive type 2 biomarker. The impact on clinical characteristics and disease severity was variable, highlighting BEC and FeNO as reflective of different facets of disease severity and exacerbation risk. The combination of low BEC with high FeNO appeared to indicate a lower risk of exacerbation. However, Pseudomonas aeruginosa colonization and a high neutrophil-to-lymphocyte ratio (NLR ≥ 3.0) were identified as more significant predictors of exacerbation frequency, independent of type 2 biomarker presence. CONCLUSIONS: Our study underscores the distinct roles of type 2 biomarkers, highlighting BEC and FeNO, in bronchiectasis for assessing disease severity and predicting exacerbation risk. It advocates for a multi-biomarker strategy, incorporating these with microbiological and clinical assessments, for comprehensive patient management.
Assuntos
Biomarcadores , Bronquiectasia , Eosinófilos , Imunoglobulina E , Óxido Nítrico , Humanos , Bronquiectasia/sangue , Bronquiectasia/diagnóstico , Feminino , Masculino , Biomarcadores/sangue , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Transversais , Imunoglobulina E/sangue , Idoso , Óxido Nítrico/metabolismo , Óxido Nítrico/análise , Contagem de Leucócitos , Índice de Gravidade de Doença , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Neutrófilos , Pseudomonas aeruginosa/isolamento & purificação , Testes Respiratórios/métodos , Progressão da Doença , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/sangue , Infecções por Pseudomonas/complicações , AdultoRESUMO
The prevention and treatment of liver disease, a class of disease that seriously threatens human health, has always been a hot topic of medical research. In recent years, with the in-depth exploration of marine resources, marine natural products have shown great potential and value in the field of liver disease treatment. Compounds extracted and isolated from marine natural products have a variety of biological activities such as significant antiviral properties, showing potential in the management of alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), protection of the liver from fibrosis, protection from liver injury and inhibition of the growth of hepatocellular carcinoma (HCC). This paper summarizes the progress of research on marine natural products for the treatment of liver diseases in the past decade, including the structural types of active substances from different natural products and the mechanisms underlying the modulation of different liver diseases and reviews their future prospects.
Assuntos
Organismos Aquáticos , Produtos Biológicos , Hepatopatias , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/química , Humanos , Animais , Hepatopatias/tratamento farmacológico , Antivirais/farmacologia , Antivirais/químicaRESUMO
BACKGROUND: Secondary pneumonia has a significant clinical impact on critically ill patients with COVID-19. AIM: Considering potential geographic variations, this study explores the clinical implications of secondary pneumonia within East Asian populations. METHODS: This multicenter, retrospective cohort study enrolled critical COVID-19 patients requiring intensive care units (ICUs) admission in Taiwan from December 31, 2020, to June 1, 2022. FINDINGS: Among the 187 critical COVID-19 patients, 80 (42.8%) developed secondary pneumonia. The primary causative pathogens were gram-negative bacilli (GNB) (76.8%). Gram-positive cocci and fungi were mainly observed during the initial two weeks of ICU stay. Notably, the incidence of pulmonary aspergillosis was 9.2% during the first week of ICU stay and all Staphylococcus aureus were susceptible to methicillin. Multi-drug resistant organisms (MDROs) were responsible for 28.3% of the cases, exhibiting significantly longer ICU stays compared to the non-MDRO group (median, 27 vs. 14 days, P < 0.001). In the multivariate analysis, Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA) scores were associated with a significantly increased risk of secondary pneumonia. In-hospital mortality was significantly higher in patients with secondary pneumonia than in those without (37.7% vs. 16.7%, P = 0.02) and survival analysis demonstrated gram-negative bacilli-related secondary pneumonia contributed to a worse prognosis. CONCLUSION: Secondary pneumonia in critical COVID-19 patients significantly raised in-hospital mortality and extended hospital and ICU stays. Moreover, the presence of GNB notably predicted an unfavorable prognosis.
Assuntos
COVID-19 , Estado Terminal , Unidades de Terapia Intensiva , Humanos , Estudos Retrospectivos , Masculino , Feminino , COVID-19/complicações , COVID-19/mortalidade , Idoso , Pessoa de Meia-Idade , Taiwan/epidemiologia , Fatores de Risco , Mortalidade Hospitalar , SARS-CoV-2 , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/complicações , Pneumonia Bacteriana/mortalidade , Tempo de Internação/estatística & dados numéricos , APACHE , Idoso de 80 Anos ou mais , Escores de Disfunção OrgânicaRESUMO
INTRODUCTION: EGFR tyrosine kinase inhibitors (TKIs) are the standard therapy for non-small-cell lung cancer (NSCLC) patients with EGFR-activating mutations in the first-line setting. Despite initial efficacy, resistance to EGFR-TKIs often develops, and platinum-based chemotherapy is the predominant subsequent treatment. For this study, we aimed to identify prognostic factors for overall survival (OS) and progression-free survival (PFS) among advanced EGFR-mutant NSCLC patients receiving platinum-pemetrexed after progression on EGFR-TKIs. Our analysis specifically focuses on 1st-line treatments limited to 1st- or 2nd-generation EGFR-TKIs, while not restricting later-line treatments involving osimertinib prior to chemotherapy. MATERIALS AND METHODS: From 2012 to 2017, 363 patients who received first-line treatment with first- or second-generation EGFR-TKIs, including gefitinib, erlotinib, and afatinib were enrolled. Some patients received different EGFR-TKIs, including osimertinib, as later-line treatment before platinum-pemetrexed. RESULTS: Median OS from the initiation of platinum-pemetrexed was 22.0 months and median PFS with platinum-pemetrexed was 6.2 months. In the multivariate Cox model, we identified three independent prognostic factors for better OS: postoperative recurrence (HR: 0.34, p = 0.004), first-line EGFR-TKI PFS ≥12 months (HR: 0.54, p = 0.002), and osimertinib treatment after platinum-pemetrexed (HR: 0.56, p = 0.005) while BMI <18.5 indicated poor prognosis (HR:1.76, p = 0.049). No statistically significant independent prognostic factors for PFS were found. Receiving osimertinib before platinum-pemetrexed treatment did not impact PFS with platinum-pemetrexed treatment (HR: 1.11, p = 0.64). CONCLUSION: Postoperative recurrence, first-line EGFR-TKI PFS ≥12 months and osimertinib treatment after platinum-pemetrexed predicted better OS, while BMI <18.5 predicted worse OS. Osimertinib treatment before platinum-pemetrexed treatment did not affect the efficacy of platinum-pemetrexed.
RESUMO
The evaluation of blasting vibrations primarily hinges on two physical quantities: velocity and acceleration. A significant challenge arises when attempting to reference the two types of vibration data in relation to one another, such as different types of seismometers, noise, etc., necessitating a method for their equivalent transformation. To address this, a transformation method is discussed in detail with a case study, and equations for the ratio (Ra) of the particle peak velocity (PPV) to the particle peak acceleration (PPA) are proposed. The findings are twofold: (1) The conventional data conversion processes often suffer from low accuracy due to the presence of trend terms and noise in the signal. To mitigate this, the built-in MATLAB function is used for trend term elimination, complemented by a combined approach that integrates CEEMDAN with WD/WDP for noise reduction. These significantly enhance the accuracy of the transformation. (2) This analysis reveals a positive power function correlation between Ra and the propagation distance of the blast vibrations, contrasted by a negative correlation with the maximum charge per delay. Intriguingly, the Ra values observed in pre-splitting blasting operations are consistently lower than those in bench blasting. The established Ra equations offer a rapid, direct method for assessing the transformation between the PPV and PPA, providing valuable insights for the optimization of blasting design.
RESUMO
BACKGROUND: Mycobacterium avium complex lung disease (MAC-LD) preferentially occurs in postmenopausal women and may have immune exhaustion involving the programmed cell death 1 (PD-1) pathway. It is still unknown whether sex-specific associations between susceptibility to MAC-LD and programmed cell death 1 gene (PDCD1) polymorphisms exist. METHODS: Adult patients with MAC-LD (n = 152) and controls (n = 167) were included at 2 medical centers in Taiwan. Five single-nucleotide polymorphisms in PDCD1 genes were genotyped, and their associations with MAC-LD and soluble PD-1 protein were analyzed, especially in sex subgroups. RESULTS: PDCD1 rs2227982 polymorphism was associated with increased risk of MAC-LD in women (adjusted odds ratio for AA vs AG vs GG, 2.205 [95% confidence interval, 1.108-4.389]; P = .02), and the rs10204525 TT genotype was associated with low risk in men (TT vs TC and CC, 0.396 [.176-.890]; P = .02). Compared with men with rs10204525 TT, women with rs2227982 AG and with AA had 2.7- and 5.0-fold increased risks, respectively. Soluble PD-1 levels were lower in the female subgroup with rs2227982 AG and AA than in the remainder (median level [interquartile range], 46.7 [33.7-71.5] pg/mL vs 66.2 [48.6-101.5] pg/mL; P < .001). CONCLUSIONS: PDCD1 genetic polymorphisms were associated with the risk of MAC-LD in a sex-specific pattern, possibly through regulation of PD-1 expression.
Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Masculino , Adulto , Humanos , Feminino , Complexo Mycobacterium avium/genética , Predisposição Genética para Doença , Receptor de Morte Celular Programada 1/genética , Infecção por Mycobacterium avium-intracellulare/genética , Infecção por Mycobacterium avium-intracellulare/microbiologia , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único , Pneumopatias/microbiologia , ApoptoseRESUMO
Since April 2022, waves of SARS-CoV-2 Omicron variant cases have surfaced in Taiwan and spread throughout the island. Using high-throughput sequencing of the SARS-CoV-2 genome, we analyzed 2,405 PCR-positive swab samples from 2,339 persons and identified the Omicron BA.2.3.7 variant as a major lineage within recent community outbreaks in Taiwan.
Assuntos
COVID-19 , Humanos , Taiwan/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Surtos de DoençasRESUMO
BACKGROUND: Osimertinib is standard-of-care therapy for previously untreated epidermal growth factor receptor (EGFR) mutation-positive advanced non-small-cell lung cancer (NSCLC). The efficacy and safety of osimertinib as adjuvant therapy are unknown. METHODS: In this double-blind, phase 3 trial, we randomly assigned patients with completely resected EGFR mutation-positive NSCLC in a 1:1 ratio to receive either osimertinib (80 mg once daily) or placebo for 3 years. The primary end point was disease-free survival among patients with stage II to IIIA disease (according to investigator assessment). The secondary end points included disease-free survival in the overall population of patients with stage IB to IIIA disease, overall survival, and safety. RESULTS: A total of 682 patients underwent randomization (339 to the osimertinib group and 343 to the placebo group). At 24 months, 90% of the patients with stage II to IIIA disease in the osimertinib group (95% confidence interval [CI], 84 to 93) and 44% of those in the placebo group (95% CI, 37 to 51) were alive and disease-free (overall hazard ratio for disease recurrence or death, 0.17; 99.06% CI, 0.11 to 0.26; P<0.001). In the overall population, 89% of the patients in the osimertinib group (95% CI, 85 to 92) and 52% of those in the placebo group (95% CI, 46 to 58) were alive and disease-free at 24 months (overall hazard ratio for disease recurrence or death, 0.20; 99.12% CI, 0.14 to 0.30; P<0.001). At 24 months, 98% of the patients in the osimertinib group (95% CI, 95 to 99) and 85% of those in the placebo group (95% CI, 80 to 89) were alive and did not have central nervous system disease (overall hazard ratio for disease recurrence or death, 0.18; 95% CI, 0.10 to 0.33). Overall survival data were immature; 29 patients died (9 in the osimertinib group and 20 in the placebo group). No new safety concerns were noted. CONCLUSIONS: In patients with stage IB to IIIA EGFR mutation-positive NSCLC, disease-free survival was significantly longer among those who received osimertinib than among those who received placebo. (Funded by AstraZeneca; ADAURA ClinicalTrials.gov number, NCT02511106.).
Assuntos
Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Acrilamidas/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Compostos de Anilina/efeitos adversos , Antineoplásicos/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Quimioterapia Adjuvante , Intervalo Livre de Doença , Método Duplo-Cego , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/cirurgia , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Pneumonectomia , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
BACKGROUND: The T790M mutation is the major resistance mechanism to first- and second-generation TKIs in EGFR-mutant NSCLC. This study aimed to investigate the utility of droplet digital PCR (ddPCR) for detection of T790M in plasma circulating tumor DNA (ctDNA), and explore its impact on prognosis. METHODS: This prospective study enrolled 80 advanced lung adenocarcinoma patients treated with gefitinib, erlotinib, or afatinib for TKI-sensitizing mutations between 2015 and 2019. Plasma samples were collected before TKI therapy and at tri-monthly intervals thereafter. Genotyping of ctDNA for T790M was performed using a ddPCR EGFR Mutation Assay. Patients were followed up until the date of death or to the end of 2021. RESULTS: Seventy-five of 80 patients experienced progressive disease. Fifty-three (71%) of 75 patients underwent rebiopsy, and T790M mutation was identified in 53% (28/53) of samples. Meanwhile, plasma ddPCR detected T790M mutation in 23 (43%) of 53 patients. The concordance rate of T790M between ddPCR and rebiopsy was 76%, and ddPCR identified 4 additional T790M-positive patients. Ten (45%) of 22 patients who did not receive rebiopsy tested positive for T790M by ddPCR. Serial ddPCR analysis showed the time interval from detection of plasma T790M to objective progression was 1.1 (0-4.1) months. Compared to 28 patients with rebiopsy showing T790M, the overall survival of 14 patients with T790M detected solely by ddPCR was shorter(41.3 [95% CI, 36.6-46.0] vs. 26.6 months [95% CI, 9.9-43.3], respectively). CONCLUSION: Plasma ddPCR-based genotyping is a useful technology for detection and monitoring of the key actionable genomic alteration, namely, T790M, in patients treated with gefitinib, erlotinib, or afatinib for activating mutations, to achieve better patient care and outcome.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Receptores ErbB/genética , Cloridrato de Erlotinib/uso terapêutico , Gefitinibe/uso terapêutico , Afatinib/uso terapêutico , Estudos Prospectivos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/diagnósticoRESUMO
BACKGROUND: Postoperative transarterial chemoembolization (PA-TACE) is an effective adjuvant therapy for preventing early postoperative recurrence of hepatocellular carcinoma (HCC); however, many patients are insensitive to it. Therefore, the present study aimed to explore the in-depth reasons for PA-TACE resistance and provide a reliable basis for selecting patients who will benefit the most from PA-TACE. METHODS: The unique gene expression profiles of primary tumors from PA-TACE-sensitive or -insensitive patients were analyzed using microarray data. Combined differential expression analysis, gene set enrichment analysis (GSEA), and weighted correlation network analysis (WGCNA) were used to screen for potential drivers of PA-TACE insensitivity. The expression of ALDOB was silenced or overexpressed in hepatoma cell lines, and changes in glycolytic activity, cycle, apoptosis, and malignant biological phenotypes were observed under normoxia and hypoxia. Finally, an animal model was constructed to verify the effects of ALDOB dysregulation on the tumorigenic ability of HCC cells in vivo. RESULTS: The inhibition of ALDOB promoted the up-regulation of Ki67 expression, and glycolytic activity was significantly enhanced. Moreover, the proliferation, invasion, and migration capabilities were increased in HCC cells and even worse in hypoxia. This advantage of malignant behavior was also validated using in vivo models. CONCLUSION: Down-regulation of ALDOB may underlie the metabolic reprogramming observed in HCC by promoting the malignant behavior of HCC cells. Hypoxia and ALDOB down-regulation acted additively, which was closely related to PA-TACE insensitivity. The use of ALDOB and Ki67 as a combined marker has the potential to identify the 'PA-TACE beneficiary population'.
Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Regulação para Baixo , Antígeno Ki-67 , Prognóstico , Hepatectomia , Estudos RetrospectivosRESUMO
Ototoxic drugs such as aminoglycoside antibiotics and cisplatin (CDDP) can cause sensorineural hearing loss (SNHL), which is closely related to oxidative stress and the acidification of the inner ear microenvironment. Effective treatment of SNHL often requires multifaceted approach due to the complex pathology, and drug combination therapy is expected to be at the forefront of modern hearing loss treatment. Here, space-station-like composite nanoparticles (CCC@mPP NPs) with pH/oxidation dual responsiveness and multidrug simultaneous delivery capability were constructed and then loaded with various drugs including panax notoginseng saponins (PNS), tanshinone IIA (TSIIA), and ammonia borane (AB) to provide robust protection against SNHL. Molecular dynamics simulation revealed that carboxymethyl chitosan/calcium carbonate-chitosan (CCC) NPs and monomethoxy poly(ethylene glycol)-PLGA (mPP) NPs can rendezvous and dock primarily by hydrogen bonding, and electrostatic forces may be involved. Moreover, CCC@mPP NPs crossed the round window membrane (RWM) and entered the inner ear through endocytosis and paracellular pathway. The docking state was basically maintained during this process, which created favorable conditions for multidrug delivery. This nanosystem was highly sensitive to pH and reactive oxygen species (ROS) changes, as evidenced by the restricted release of payload at alkaline condition (pH 7.4) without ROS, while significantly promoting the release in acidic condition (pH 5.0 and 6.0) with ROS. TSIIA/PNS/AB-loaded CCC@mPP NPs almost completely preserved the hair cells and remained the hearing threshold shift within normal limits in aminoglycoside- or CDDP-treated guinea pigs. Further experiments demonstrated that the protective mechanisms of TSIIA/PNS/AB-loaded CCC@mPP NPs involved direct and indirect scavenging of excessive ROS, and reduced release of pro-inflammatory cytokines. Both in vitro and in vivo experiments showed the high biocompatibility of the composite NPs, even after long-term administration. Collectively, this work suggests that composite NPs is an ideal multi-drug-delivery vehicle and open new avenues for inner ear disease therapies.