Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Learn Mem ; 25(4): 183-196, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29545390

RESUMO

The evolutionarily conserved Elongator Complex associates with RNA polymerase II for transcriptional elongation. Elp3 is the catalytic subunit, contains histone acetyltransferase activity, and is associated with neurodegeneration in humans. Elp1 is a scaffolding subunit and when mutated causes familial dysautonomia. Here, we show that elp3 and elp1 are required for aversive long-term olfactory memory in Drosophila RNAi knockdown of elp3 in adult mushroom bodies impairs long-term memory (LTM) without affecting earlier forms of memory. RNAi knockdown with coexpression of elp3 cDNA reverses the impairment. Similarly, RNAi knockdown of elp1 impairs LTM and coexpression of elp1 cDNA reverses this phenotype. The LTM deficit in elp3 and elp1 knockdown flies is accompanied by the abolishment of a LTM trace, which is registered as increased calcium influx in response to the CS+ odor in the α-branch of mushroom body neurons. Coexpression of elp1 or elp3 cDNA rescues the memory trace in parallel with LTM. These data show that the Elongator complex is required in adult mushroom body neurons for long-term behavioral memory and the associated long-term memory trace.


Assuntos
Histona Acetiltransferases/fisiologia , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Olfato , Animais , Animais Geneticamente Modificados , Condicionamento Clássico , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster , Técnicas de Silenciamento de Genes , Histona Acetiltransferases/genética , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Condutos Olfatórios/fisiologia
2.
J Neurosci ; 34(43): 14463-74, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25339757

RESUMO

Synchronous neuronal activity in the thalamocortical system is critical for a number of behaviorally relevant computations, but hypersynchrony can limit information coding and lead to epileptiform responses. In the somatosensory thalamus, afferent inputs are transformed by networks of reciprocally connected thalamocortical neurons in the ventrobasal nucleus (VB) and GABAergic neurons in the thalamic reticular nucleus (TRN). These networks can generate oscillatory activity, and studies in vivo and in vitro have suggested that thalamic oscillations are often accompanied by synchronous neuronal activity, in part mediated by widespread divergence and convergence of both reticulothalamic and thalamoreticular pathways, as well as by electrical synapses interconnecting TRN neurons. However, the functional organization of thalamic circuits and its role in shaping input-evoked activity patterns remain poorly understood. Here we show that optogenetic activation of cholinergic synaptic afferents evokes near-synchronous firing in mouse TRN neurons that is rapidly desynchronized in thalamic networks. We identify several mechanisms responsible for desynchronization: (1) shared inhibitory inputs in local VB neurons leading to asynchronous and imprecise rebound bursting; (2) TRN-mediated lateral inhibition that further desynchronizes firing in the VB; and (3) powerful yet sparse thalamoreticular connectivity that mediates re-excitation of the TRN but preserves asynchronous firing. Our findings reveal how distinct local circuit features interact to desynchronize thalamic network activity.


Assuntos
Córtex Cerebral/fisiologia , Neurônios Colinérgicos/fisiologia , Sincronização de Fases em Eletroencefalografia/fisiologia , Rede Nervosa/fisiologia , Tálamo/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
3.
J Neurosci ; 31(15): 5643-7, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21490205

RESUMO

A prior screen identified dozens of Drosophila melanogaster mutants that possess defective long-term memory (LTM). Using spaced olfactory conditioning, we trained 26 of these mutant lines to associate an odor cue with electric shock and then examined the memory of this conditioning 24 h later. All of the mutants tested revealed a deficit in LTM compared to the robust LTM observed in control flies. We used in vivo functional optical imaging to measure the magnitude of a previously characterized LTM trace, which is manifested as increased calcium influx into the axons of α/ß mushroom body neurons in response to the conditioned odor. This memory trace was defective in all 26 of the LTM mutants. These observations elevate the significance of this LTM trace given that 26 independent mutants all exhibit a defect in the trace, and further suggest that the calcium trace is a fundamental mechanism underlying Drosophila LTM.


Assuntos
Drosophila/genética , Drosophila/fisiologia , Memória de Longo Prazo/fisiologia , Corpos Pedunculados/fisiologia , Mutação/fisiologia , Neurônios/fisiologia , Animais , Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Condicionamento Operante/fisiologia , Interpretação Estatística de Dados , Aprendizagem/fisiologia , Corpos Pedunculados/citologia , Olfato/fisiologia
4.
J Neurosci ; 30(49): 16699-708, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21148009

RESUMO

Using functional optical imaging in vivo, we demonstrate that the γ mushroom body (MB) neurons of Drosophila melanogaster respond with axonal calcium influx when odors or electric shock stimuli are presented to the fly. Pairing of odor and electric shock stimuli in a single training trial or multiple, massed training trials failed to modify the odor-evoked calcium signal when flies were tested at several different times after training. In contrast, animals that received multiple but spaced odor-shock pairings exhibited a robust increase in calcium influx into the MB axons when tested between 18 and 48 h after training. This time window for the γ neuron memory trace is displaced relative to the modifications that occur between 9 and 24 h after training in the α branch of the α/ß MB neurons. The α/ß and the γ neuron long-term memory traces were both blocked by expressing a repressor of the transcription factor cAMP response element-binding protein or a calcium/calmodulin-dependent kinase II hairpin RNA. These results demonstrate that behavioral long-term olfactory memory is encoded as modifications of calcium influx into distinct MB neurons during overlapping but different windows of time after training.


Assuntos
Condicionamento Clássico/fisiologia , Memória de Longo Prazo/fisiologia , Corpos Pedunculados/citologia , Neurônios/fisiologia , Olfato/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal , Proteína de Ligação a CREB/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Drosophila , Estimulação Elétrica/efeitos adversos , Estimulação Elétrica/métodos , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Neurônios/citologia , Odorantes , Estatísticas não Paramétricas , Fatores de Tempo
5.
Neuron ; 52(5): 845-55, 2006 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17145505

RESUMO

Functional optical imaging showed that odor or electric shock stimuli presented to the fly causes transient calcium influx into the two major axon branches of alpha/beta mushroom body (MB) neurons. One pairing of odor and electric shock stimuli or multiple, massed pairings did not alter odor-evoked calcium influx. In contrast, animals that received multiple, spaced pairings exhibited a robust increase in calcium influx into the MB axons when tested at 9 or 24 hr after training, but not at 3 hr. This modification occurred only in the alpha branch of the neurons and was blocked by mutation of the amnesiac gene, inhibition of protein synthesis, or the expression of a protein blocker of the transcription factor Creb. Thus, behavioral long-term olfactory memory appears to be encoded as a branch-specific modification of calcium influx into the alpha/beta MB neurons that occurs after spaced training in a protein synthesis-, Creb-, and amnesiac-dependent way.


Assuntos
Condicionamento Operante/fisiologia , Drosophila/fisiologia , Memória/fisiologia , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Olfato/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Cálcio/metabolismo , Cálcio/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Cicloeximida/farmacologia , Eletrochoque , Temperatura Alta , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Plasticidade Neuronal/fisiologia , Inibidores da Síntese de Proteínas/farmacologia
6.
Neuron ; 42(3): 437-49, 2004 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15134640

RESUMO

In the olfactory bulb of vertebrates or the homologous antennal lobe of insects, odor quality is represented by stereotyped patterns of neuronal activity that are reproducible within and between individuals. Using optical imaging to monitor synaptic activity in the Drosophila antennal lobe, we show here that classical conditioning rapidly alters the neural code representing the learned odor by recruiting new synapses into that code. Pairing of an odor-conditioned stimulus with an electric shock-unconditioned stimulus causes new projection neuron synapses to respond to the odor along with those normally activated prior to conditioning. Different odors recruit different groups of projection neurons into the spatial code. The change in odor representation after conditioning appears to be intrinsic to projection neurons. The rapid recruitment by conditioning of new synapses into the representation of sensory information may be a general mechanism underlying many forms of short-term memory.


Assuntos
Condicionamento Clássico/fisiologia , Memória/fisiologia , Odorantes , Olfato/fisiologia , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Eletrochoque/métodos , Bulbo Olfatório/metabolismo , Recrutamento Neurofisiológico/fisiologia , Sinapses/genética
7.
Neuron ; 91(4): 739-747, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27499081

RESUMO

Loss- and gain-of-function mutations in methyl-CpG-binding protein 2 (MECP2) underlie two distinct neurological syndromes with strikingly similar features, but the synaptic and circuit-level changes mediating these shared features are undefined. Here we report three novel signs of neural circuit dysfunction in three mouse models of MECP2 disorders (constitutive Mecp2 null, mosaic Mecp2(+/-), and MECP2 duplication): abnormally elevated synchrony in the firing activity of hippocampal CA1 pyramidal neurons, an impaired homeostatic response to perturbations of excitatory-inhibitory balance, and decreased excitatory synaptic response in inhibitory neurons. Conditional mutagenesis studies revealed that MeCP2 dysfunction in excitatory neurons mediated elevated synchrony at baseline, while MeCP2 dysfunction in inhibitory neurons increased susceptibility to hypersynchronization in response to perturbations. Chronic forniceal deep brain stimulation (DBS), recently shown to rescue hippocampus-dependent learning and memory in Mecp2(+/-) (Rett) mice, also rescued all three features of hippocampal circuit dysfunction in these mice.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Estimulação Encefálica Profunda , Fórnice/fisiologia , Proteína 2 de Ligação a Metil-CpG/fisiologia , Inibição Neural/fisiologia , Síndrome de Rett/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Duplicação Gênica/genética , Homeostase/fisiologia , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Mosaicismo , Mutação/fisiologia , Células Piramidais/fisiologia , Síndrome de Rett/genética
8.
J Neurosci ; 23(1): 64-72, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12514202

RESUMO

Camgaroos are yellow fluorescent protein derivatives that hold promise as transgenically encoded calcium sensors in behaving animals. We expressed two versions of camgaroo in Drosophila mushroom bodies using the galactosidase-4 (GAL4) system. Potassium depolarization of brains expressing the reporters produces a robust increase in fluorescence that is blocked by removing extracellular calcium or by antagonists of voltage-dependent calcium channels. The fluorescence increase is not attributable to cytoplasmic alkalization; depolarization induces a slight acidification of the cytoplasm of mushroom body neurons. Acetylcholine applied near the dendrites of the mushroom body neurons induces a rapid and ipsilateral-specific fluorescence increase in the mushroom body axons that is blocked by antagonists of calcium channels or nicotinic acetylcholine receptors. Fluorescence was observed to increase in all three classes of mushroom body neurons, indicating that all types respond to cholinergic innervation.


Assuntos
Cálcio/análise , Drosophila/química , Proteínas Luminescentes/análise , Corpos Pedunculados/química , Neurônios/química , Acetilcolina/farmacologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Proteínas de Ligação a DNA , Drosophila/efeitos dos fármacos , Drosophila/metabolismo , Proteínas de Fluorescência Verde , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Corpos Pedunculados/efeitos dos fármacos , Corpos Pedunculados/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Potássio/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transgenes
9.
Cell Rep ; 4(6): 1082-9, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24035392

RESUMO

Wnt signaling regulates synaptic plasticity and neurogenesis in the adult nervous system, suggesting a potential role in behavioral processes. Here, we probed the requirement for Wnt signaling during olfactory memory formation in Drosophila using an inducible RNAi approach. Interfering with ß-catenin expression in adult mushroom body neurons specifically impaired long-term memory (LTM) without altering short-term memory. The impairment was reversible, being rescued by expression of a wild-type ß-catenin transgene, and correlated with disruption of a cellular LTM trace. Inhibition of wingless, a Wnt ligand, and arrow, a Wnt coreceptor, also impaired LTM. Wingless expression in wild-type flies was transiently elevated in the brain after LTM conditioning. Thus, inhibiting three key components of the Wnt signaling pathway in adult mushroom bodies impairs LTM, indicating that this pathway mechanistically underlies this specific form of memory.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Memória de Longo Prazo/fisiologia , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Proteínas do Domínio Armadillo/biossíntese , Proteínas do Domínio Armadillo/genética , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Masculino , Neurônios/metabolismo , Condutos Olfatórios/metabolismo , Transdução de Sinais , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transgenes
10.
PLoS One ; 8(8): e70415, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940572

RESUMO

The group I metabotropic glutamate receptor 5 (mGluR5) has been implicated in the pathology of various neurological disorders including schizophrenia, ADHD, and autism. mGluR5-dependent synaptic plasticity has been described at a variety of neural connections and its signaling has been implicated in several behaviors. These behaviors include locomotor reactivity to novel environment, sensorimotor gating, anxiety, and cognition. mGluR5 is expressed in glutamatergic neurons, inhibitory neurons, and glia in various brain regions. In this study, we show that deleting mGluR5 expression only in principal cortical neurons leads to defective cannabinoid receptor 1 (CB1R) dependent synaptic plasticity in the prefrontal cortex. These cortical glutamatergic mGluR5 knockout mice exhibit increased novelty-induced locomotion, and their locomotion can be further enhanced by treatment with the psychostimulant methylphenidate. Despite a modest reduction in repetitive behaviors, cortical glutamatergic mGluR5 knockout mice are normal in sensorimotor gating, anxiety, motor balance/learning and fear conditioning behaviors. These results show that mGluR5 signaling in cortical glutamatergic neurons is required for precisely modulating locomotor reactivity to a novel environment but not for sensorimotor gating, anxiety, motor coordination, several forms of learning or social interactions.


Assuntos
Locomoção/fisiologia , Neurônios/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Corticosteroides/sangue , Animais , Western Blotting , Eletrofisiologia , Feminino , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor de Glutamato Metabotrópico 5/genética
11.
Neuron ; 67(5): 810-20, 2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20826312

RESUMO

Cyclic AMP signaling in Drosophila mushroom body neurons, anchored by the adenylyl cyclase encoded by the rutabaga gene, is indispensable for olfactory memory formation. From a screen for new memory mutants, we identified alleles of the gilgamesh (gish) gene, which encodes a casein kinase Iγ homolog that is preferentially expressed in the mushroom body neurons. The gish-encoded kinase participates in the physiology of these neurons underlying memory formation since the mutant memory deficit was rescued with expression of a gish cDNA in these neurons only during adulthood. A cellular memory trace, detected as increased calcium influx into the α'/ß' neuron processes in response to the odor used for conditioning, was disrupted in gish mutants. Epistasis experiments indicated a lack of genetic interactions between gish and rutabaga. Therefore, gish participates in a rutabaga-independent pathway for memory formation and accounts for some of the residual learning that occurs in rutabaga mutants.


Assuntos
Adenilil Ciclases/metabolismo , Aprendizagem da Esquiva/fisiologia , Caseína Quinase I/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Olfato/fisiologia , Adenilil Ciclases/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal , Caseína Quinase I/deficiência , Caseína Quinase I/genética , Condicionamento Clássico/fisiologia , Drosophila , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Regulação da Expressão Gênica/genética , Transtornos da Memória/genética , Corpos Pedunculados/crescimento & desenvolvimento , Corpos Pedunculados/metabolismo , Mutação/genética , Odorantes
12.
Cell ; 123(5): 945-57, 2005 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-16325586

RESUMO

Formation of normal olfactory memory requires the expression of the wild-type amnesiac gene in the dorsal paired medial (DPM) neurons. Imaging the activity in the processes of DPM neurons revealed that the neurons respond when the fly is stimulated with electric shock or with any odor that was tested. Pairing odor and electric-shock stimulation increases odor-evoked calcium signals and synaptic release from DPM neurons. These memory traces form in only one of the two branches of the DPM neuron process. Moreover, trace formation requires the expression of the wild-type amnesiac gene in the DPM neurons. The cellular memory traces first appear at 30 min after conditioning and persist for at least 1 hr, a time window during which DPM neuron synaptic transmission is required for normal memory. DPM neurons are therefore "odor generalists" and form a delayed, branch-specific, and amnesiac-dependent memory trace that may guide behavior after acquisition.


Assuntos
Condicionamento Clássico/fisiologia , Drosophila melanogaster , Memória/fisiologia , Neurônios/metabolismo , Olfato/fisiologia , Animais , Cálcio/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Estimulação Elétrica , Neurônios/citologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Odorantes , Transmissão Sináptica/fisiologia , Fatores de Tempo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA