RESUMO
Anti-Stokes fluorescence (ASF) cooling has been demonstrated to be a viable method for balancing the waste heat produced in gain materials. In addition, radiation-balanced fiber lasers and amplifiers at atmospheric pressure have recently been developed. Here, we evaluate the cooling characteristics in a long section of a Yb-doped ZBLAN fiber with high pump power. The fiber has a 200-µm-diameter core and is doped with 3 wt. % Yb3+. As indicated by a thermal camera, cooling by over 7â K below ambient temperature was achieved by core pumping at 1030â nm. The temperature drop distribution at multiple measurement points in the fiber was evaluated with a maximum pump power of tens of watts. The results demonstrate the excellent ASF cooling performance of Yb-doped ZBLAN fibers. This study has great significance for the development of high-power radiation-balanced fiber lasers.
RESUMO
It is well known that initial defects play an essential role in the dynamic failure of materials. In practice, dynamic tension is often realized by release of compression waves. In this work, we consider void-included single-crystal aluminum and investigate the damage characteristics under different shock compression and release based on direct atomistic simulations. Elastic deformation, limited growth and closure of voids, and the typical spall and new nucleation of voids were all observed. In the case of elastic deformation, we observed the oscillatory change of void volume under multiple compression and tension. With the increase of impact velocity, the void volume reduced oscillations to the point of disappearance with apparent strain localization and local plastic deformation. The incomplete or complete collapsed void became the priority of damage growth under tension. An increase in sample length promoted the continuous growth of preset void and the occurrence of fracture. Of course, on the release of strong shock, homogeneous nucleation of voids covered the initial void, leading to a wider range of damaged zones. Finally, the effect of the preset void on the spall strength was presented for different shock pressures and strain rates.