RESUMO
Cellulose is the most abundant renewable natural polymer on earth, but it does not conduct electricity, which limits its application expansion. The existing methods of making cellulose conductive are combined with another conductive material or high-temperature/high-pressure carbonization of the cellulose itself, while in the traditional method of sulfuric acid hydrolysis to extract nanocellulose, it is usually believed that a too high temperature will destroy cellulose and lead to experimental failure. Now, based on a new research perspective, by controlling the continuous reaction process and isolating oxygen, we directly extracted intrinsically conductive cellulose nanofiber (CNF) from biomass, where the confined range molecular chains of CNF were converted to highly graphitized carbon at only 90 °C and atmospheric pressure, while large-scale twisted graphene films can be synthesized bottom-up from CNFene suspensions, called CNFene (cellulose nanofiber-graphene). The conductivity of the best CNFene can be as high as 1.099 S/cm, and the generality of this synthetic route has been verified from multiple biomass cellulose sources. By comparing the conventional high-pressure hydrothermal and high-temperature pyrolysis methods, this study avoided the dangerous high-pressure environment and saved 86.16% in energy. These findings break through the conventional notion that nanocellulose cannot conduct electricity by itself and are expected to extend the application potential of pure nanocellulose to energy storage, catalysis, and sensing.
RESUMO
The vast majority of in vitro structural and functional studies of the activation mechanism of protein kinases use the kinase domain alone. Well-demonstrated effects of regulatory domains or allosteric factors are scarce for serine/threonine kinases. Here we use a site-specifically phosphorylated SCD1-FHA1-kinase three-domain construct of the serine/threonine kinase Rad53 to show the effect of phospho-priming, an in vivo regulatory mechanism, on the autophosphorylation intermediate and specificity. Unphosphorylated Rad53 is a flexible monomer in solution but is captured in an asymmetric enzyme:substrate complex in crystal with the two FHA domains separated from each other. Phospho-priming induces formation of a stable dimer via intermolecular pT-FHA binding in solution. Importantly, autophosphorylation of unprimed and phospho-primed Rad53 produced predominantly inactive pS350-Rad53 and active pT354-Rad53, respectively. The latter mechanism was also demonstrated in vivo. Our results show that, while Rad53 can display active conformations under various conditions, simulation of in vivo regulatory conditions confers functionally relevant autophosphorylation.
Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/química , Quinase do Ponto de Checagem 2/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Dano ao DNA , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Fosfotreonina/metabolismo , Domínios Proteicos , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Espalhamento a Baixo Ângulo , Serina/química , Treonina/química , Treonina/metabolismoRESUMO
Forkhead-associated (FHA) domain is the only signaling domain that recognizes phosphothreonine (pThr) specifically. TRAF-interacting protein with an FHA domain (TIFA) was shown to be involved in immune responses by binding with TRAF2 and TRAF6. We recently reported that TIFA is a dimer in solution and that, upon stimulation by TNF-α, TIFA is phosphorylated at Thr9, which triggers TIFA oligomerization via pThr9-FHA domain binding and activates nuclear factor κB (NF-κB). However, the structural mechanism for the functionally important TIFA oligomerization remains to be established. While FHA domain-pThr binding is known to mediate protein dimerization, its role in oligomerization has not been demonstrated at the structural level. Here we report the crystal structures of TIFA (residues 1-150, with the unstructured C-terminal tail truncated) and its complex with the N-terminal pThr9 peptide (residues 1-15), which show unique features in the FHA structure (intrinsic dimer and extra ß-strand) and in its interaction with the pThr peptide (with residues preceding rather than following pThr). These structural features support previous and additional functional analyses. Furthermore, the structure of the complex suggests that the pThr9-FHA domain interaction can occur only between different sets of dimers rather than between the two protomers within a dimer, providing the structural mechanism for TIFA oligomerization. Our results uncover the mechanism of FHA domain-mediated oligomerization in a key step of immune responses and expand the paradigm of FHA domain structure and function.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos/metabolismo , Fosfotreonina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Fosfotreonina/química , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de ProteínaRESUMO
The nucleoprotein (NP) of the influenza virus exists as trimers, and its tail-loop binding pocket has been suggested as a potential target for antiinfluenza therapeutics. The possibility of NP as a drug target was validated by the recent reports that nucleozin and its analogs can inhibit viral replication by inducing aggregation of NP trimers. However, these inhibitors were identified by random screening, and the binding site and inhibition mechanism are unclear. We report a rational approach to target influenza virus with a new mechanism--disruption of NP-NP interaction. Consistent with recent work, E339A, R416A, and deletion mutant Δ402-428 were unable to support viral replication in the absence of WT NP. However, only E339A and R416A could form hetero complex with WT NP, but the complex was unable to bind the RNA polymerase, leading to inhibition of viral replication. These results demonstrate the importance of the E339 R416 salt bridge in viral survival and establish the salt bridge as a sensitive antiinfluenza target. To provide further support, we showed that peptides encompassing R416 can disrupt NP-NP interaction and inhibit viral replication. Finally we performed virtual screening to target E339 R416, and some small molecules identified were shown to disrupt the formation of NP trimers and inhibit replication of WT and nucleozin-resistant strains. This work provides a new approach to design antiinfluenza drugs.
Assuntos
Modelos Moleculares , Complexos Multiproteicos/metabolismo , Nucleoproteínas/metabolismo , Orthomyxoviridae/genética , Conformação Proteica , Replicação Viral/genética , Animais , Western Blotting , Linhagem Celular , Dicroísmo Circular , Primers do DNA/genética , Cães , Sistemas de Liberação de Medicamentos/métodos , Técnica Indireta de Fluorescência para Anticorpo , Ligação de Hidrogênio , Luciferases , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto/genética , Nucleoproteínas/genética , Multimerização Proteica , Eletricidade Estática , UltracentrifugaçãoRESUMO
Optical low-coherence interferometry (OLCI) takes advantage of the variation in refractive index in silicon-wire microring resonator (MRR) effective lengths to perform glucose biosensing using MRR interferograms. The MRR quality factor (Q), proportional to the effective length, could be improved using the silicon-wire propagation loss and coupling ratio from the MRR coupler. Our study showed that multimode interference (MMI) performed well in broad band response, but the splitting ratio drifted to 75/25 due to the stress issue. The glucose sensing sensitivity demonstrated 0.00279 meter per refractive-index-unit (RIU) with a Q factor of ~30,000 under transverse electric polarization. The 1,310 nm DFB laser was built in the OLCI system as the optical ruler achieving 655 nm characterization accuracy. The lowest sensing limitation was therefore 2 × 10-4 RIU. Moreover, the MRR effective length from the glucose sensitivity could be utilized to experimentally demonstrate the silicon wire effective refractive index with a width of 0.45 mm and height of 0.26 mm.
Assuntos
Técnicas Biossensoriais/métodos , Interferometria/métodos , Desenho de EquipamentoRESUMO
This study presents a novel and environmentally friendly method for producing cellulose microspheres (CM) with controllable morphology and size using electrostatic droplets. The traditional droplet method for CM production requires complex equipment and harmful reagents. In contrast, the proposed method offers a simple electrostatic droplet approach to fabricate CM10 at 10 kV, which exhibited a smaller volume, linear microscopic morphology, and a larger specific surface area, with a 36.60 % improvement compared to CM0 (prepared at 0 kV). CM10 also demonstrated excellent underwater structural stability, recovering in just 0.5 s, and exhibited the highest adsorption capacity for Cr(VI) at 190.16 mg/g, a 72.15 % improvement over CM0. This enhanced adsorption capacity can be attributed to the unique structure of CM10 and the introduction of more amino groups. Moreover, CM10 displayed good cyclic adsorption capacity and high dynamic adsorption efficiency, making it highly suitable for practical applications. CM10 exhibited remarkable adsorption capacity, stability, and practical value in treating Cr(VI) wastewater. This work proposes a simple and eco-friendly method for producing CM with excellent structural controllability and stability, providing an effective route for wastewater treatment.
RESUMO
Visual pH-responsive packaging material is particularly important in food supply chain safety monitoring due to their non-destructive monitoring method and intuitive result. However, it has always been limited by the instability performance of pH-response components and carriers, which further hinders its wide food safety application. To address these challenges, we selected cellulose with remarkable biocompatibility and mechanical properties as the carrier, and high pH-responsive curcumin to develop a smart packaging material (RC/GC composite film) with real-time food safety monitoring. Compared with pure cellulose film, the RC/GC composite film exhibited excellent mechanical properties (4-fold enhancement) and thermal stability (100 °C increasing). Meanwhile, based on the first reported strategy of curcumin in-situ growth during cellulose film formation, the RC/GC composite film exhibited exceptional antioxidant activity (89.2 %), antimicrobial property (91.6 %), and significant pH-responsive sensitivity (within 15 s). This innovative approach offers a new strategy for easy-to-use and effective monitoring of food spoilage in packaging materials.
Assuntos
Celulose , Curcumina , Embalagem de Alimentos , Curcumina/química , Curcumina/farmacologia , Embalagem de Alimentos/métodos , Celulose/química , Concentração de Íons de Hidrogênio , Antioxidantes/química , Antioxidantes/farmacologiaRESUMO
The packaging of fresh foods increasingly focuses on renewable and eco-friendly cellulose films, but their low dissolution efficiency and weak mechanical strength greatly limit their wide application, which also cannot be used for smart packaging. Here, a highly efficient synergistic chloride-salt dissolution method was proposed to fabricate robust, transparent, and smart cellulose films. Cellulose films with appropriate Ca2+ concentration exhibited robust mechanical strength, better thermal stability, high transparency and crystallinity. The metal chelation of Ca2+ with cellulose chains could induce cellulose chain arrangement during the cellulose regeneration process. Particularly, compared to pure cellulose films, the tensile strength and elongation at break of cellulose films with suitable Ca2+ were increased by 167 % and 200 %, respectively. Moreover, optimal cellulose films can be used to reflect the quality of the fruit by detecting changes in ethanol gas. Hence, a novel strategy is presented to fabricate robust and transparent cellulose films with great potential application for smart packaging.
Assuntos
Celulose , Embalagem de Produtos , Embalagem de Medicamentos , Resistência à Tração , Embalagem de AlimentosRESUMO
The widespread use of petroleum-based plastic mulch in agriculture has accelerated white and microplastic pollution while posing a severe agroecological challenge due to its difficulty in decomposing in the natural environment. However, endowing mulch film with degradability and growth cycle adaptation remains elusive due to the inherent non-degradability of petroleum-based plastics severely hindering its applications. This work reports polylactic acids hyperbranched composite mulch (PCP) and measured biodegradation behavior under burial soil, seawater, and ultraviolet (UV) aging to understand the biodegradation kinetics and to increase their sustainability in the agriculture field. Due to high interfacial interactions between polymer and nanofiler, the resultant PCP mulch significantly enhances crystallization ability, hydrophilicity, and mechanical properties. PCP mulch can be scalable-manufactured to exhibit modulated degradation performance under varying degradation conditions and periods while concurrently enhancing crop growth (wheat). Thus, such mulch with excellent performance can reduce labor costs and the environmental impact of waste mulch disposal to replace traditional mulch for sustainable agricultural production.
Assuntos
Nanopartículas , Petróleo , Celulose , Plásticos , Solo/química , Agricultura , Biodegradação AmbientalRESUMO
The slow crystallization and weak mechanical features of poly (butylene adipate-co-terephthalate) (PBAT) have become a severe industrial problem in food packaging. Inspired by principle of bionic structure, functional cellulose nanocrystals (CNC) modified with hexamethylene diisocyanate (HMDI) and toluene diisocyanate (TDI) can enhance the crystallization ability and mechanical properties of PBAT nanocomposites. Significantly, CNC-T (CNC modified by TDI) showed a stronger reinforced effect on PBAT properties than unmodified CNCs and CNC-H (CNC modified by HMDI) nanofillers due to hydrogen bonds, π-π interaction between PBAT matrix and CNC-T nanofillers with benzene ring structure. Thus, compared with pure PBAT, PBAT/5CNC-T composites displayed an enhancement of 34.5 % on the tensile strength and exhibited the most robust nucleation ability on PBAT crystallization than CNC and CNC-H. Meanwhile, the possible nucleation, crystallization, and performance reinforcement mechanisms of PBAT nanocomposites have been presented, which is very beneficial for designing robust PBAT nanocomposites with functional cellulose nanocrystals for potential green packaging.
Assuntos
Celulose , Nanopartículas , Celulose/química , Cristalização , Poliésteres/química , Resistência à Tração , Nanopartículas/químicaRESUMO
Discharging wastewater from industrial dyeing and printing processes poses a significant environmental threat, necessitating green and efficient adsorbents. Cellulose nanocrystals (CNCs) have emerged as a promising option for dye adsorbing. However, the industrial production and commercialization of CNCs still faced low yield, time-consuming, and uneco-friendly. In this study, we proposed a facile hydrochloric/maleic acid (HCl/C4H4O4) hydrolysis method to synthesize carboxylated CNCs using Box-Behnken design and dual response surface design, which can systematically investigate the effect of experimental factors (temperature, time and HCl/C4H4O volume ratio) on the final products. The rod-liked carboxylated CNCs gave the highest yield of 90.50 %, maximum carboxyl content of 1.29 mmol/g, and efficient dye removal ratio of 91.5 %. Furthermore, compared to CNCs obtained by commonly sulfuric acid hydrolysis way (CNCs-S) with a Tmax of 242.6 °C, the CNCs extracted at 5 h exhibited significantly improved thermal stability with Tmax reaching 351.2 °C. The enriched carboxyl content and excellent thermal stability show potential wastewater treatment applications under harsh conditions.
RESUMO
The development of self-powered sensors with interference-resistant detection is a priority area of research for the next generation of wearable electronic devices. Nevertheless, the presence of multiple stimuli in the actual environment will result in crosstalk with the sensor, thereby hindering the ability to obtain an accurate response to a singular stimulus. Here, we present a self-powered sensor composed of silk-based conductive composite fibers (CNFA@ESF), which is capable of energy storage and sensing. The fabricated CNFA@ESF exhibits excellent mechanical performance, as well as flexibility that can withstand various deformations. The CNFA@ESF provides a good areal capacitance (44.44 mF cm-2), high-rate capability, and excellent cycle stability (91 % for 5000 cycles). In addition, CNFA@ESF also shows good sensing performance for multiple signals including strain, temperature, and humidity. It was observed that the assembly of the symmetrical device with a stiff hydrogel surface layer for protection enabled the real-time, interference-free monitoring of temperature signals. Also, the CNFA@ESF can be woven into fabrics and integrated with a solar cell to form a self-powered sensor system, which has been proven to convert and store solar energy to power electronic watches, indicating its huge potential for future wearable electronics.
Assuntos
Capacitância Elétrica , Seda , Temperatura , Dispositivos Eletrônicos Vestíveis , Seda/química , Técnicas Biossensoriais/métodosRESUMO
Biomass-based slow-release fertilizers (SRFs) are a sustainable solution for addressing food scarcity, improving fertilizer efficiency, and reducing pollution, whereas they still face complex preparation, high costs, and low release characteristics. This study introduces a simple and innovative approach to producing bifunctional green SRFs with controlled release and conditioning properties for saline soils and harsh environments. The method involves a one-pot preparation of microsphere-structured amine-modified lignin slow-release fertilizer (L-UX) using biomass lignin as the starting material. The L-UX demonstrates an exceptional fertilizer loading rate (66.2 %) and extended slow-release performance (288 h), effectively enhancing the fertilizer's release ability. Compared to traditional fertilizers, the bifunctional L-UX significantly improves soil water retention capacity (824.3 %), plant growth, and germination percentage in challenging soil conditions (133 %). These findings highlight the potential of L-UX as a large-scale controlled-release fertilizer in harsh environments. A life cycle assessment (LCA) was also conducted to evaluate the environmental impact of L-UX from its production to disposal. This revealed that L-UX has a minimal environmental footprint compared to conventional inorganic fertilizers. This study further supports the widespread application of L-UX as an environmentally friendly alternative.
Assuntos
Aminas , Fertilizantes , Lignina , Solo , Lignina/química , Aminas/química , Solo/química , Preparações de Ação Retardada , Biomassa , Água/químicaRESUMO
The performance of cellulose-based materials is highly dependent on the choice of solvent systems. Exceptionally, cellulose dissolution and derivatization by efficient solvent have been considered as a key factor for large-scale industrial applications of cellulose. However, cellulose dissolution and derivatization often requires harsh reaction conditions, high energy consumption, and complex solubilizing, resulting in environmental impacts and low practical value. Here we address these limitations by using a low-temperature oxalic acid/sulfuric acid solvent to enable cellulose dissolution and derivatization for high-performance cellulose films. The dissolution and derivatization mechanism of the mixed acid is studied, demonstrating that cellulose is firstly socked by oxalic acid, then more hydrogen bonds ionized by sulfuric acid break cellulose chain, and finally the esterification reaction between oxalic acid and cellulose is catalyzed by sulfuric acid. Solutions containing 8 %-10 % cellulose are obtained and can be stored for a long time at -18 °C without significant degradation. Moreover, the cellulose film exhibits a higher tensile strength of up to 66.1 MPa, thermal stability, and degree of polymerization compared to that fabricated by sulfuric acid. These unique advantages provide new paths to utilize renewable resources for alternative food packaging materials at an industrial scale.
Assuntos
Celulose , Embalagem de Alimentos , Ácido Oxálico , Ácidos Sulfúricos , Ácidos Sulfúricos/química , Celulose/química , Embalagem de Alimentos/métodos , Ácido Oxálico/química , Resistência à Tração , Solubilidade , Solventes/químicaRESUMO
Concepts of sustainability must be developed to overcome the increasing environmental hazards caused by fossil resources. Cellulose derivatives with excellent properties are promising biobased alternatives for petroleum-derived materials. However, a one-pot route to achieve cellulose dissolution and derivatization is very challenging, requiring harsh conditions, high energy consumption, and complex solubilizing. Herein, we design a one-pot tailoring hydronium ion driven dissociation-chemical cross-linking strategy to achieve superfast cellulose dissolution and derivatization for orderly robust cellulose films. In this strategy, there is a powerful driving force from organic acid with a pKa below 3.75 to dissociate H+ and trigger the dissolution and derivatization of cellulose under the addition of H2SO4. Nevertheless, the driving force can only trigger a partial swelling of cellulose but without dissolution when the pKa of organic acid is above 4.26 for the dissociation of H+ is inhibited by the addition of inorganic acid. The cellulose film has high transmittance (up to â¼90%), excellent tensile strength (â¼122 MPa), and is superior to commercial PE film. Moreover, the tensile strength is increased by 400% compared to cellulose film prepared by the ZnCl2 solvent. This work provides an efficient solvent, which is of great significance for emerging cellulose materials from renewable materials.
RESUMO
Nylon fibers have great potentials in smart textiles due to their excellent wear resistance, resilience, and chemical stability, whereas poor combination between nylon fibers and conductive materials causes discontinuous signal capture. In this work, nylon fibers/di-aldehyde cellulose nanocrystals/polypyrrole (NFACP) biosensors with robust scrub-resistant and signal-capture ability were fabricated by interfacial multiple covalent reactions. The best NFACP0.2 biosensor exhibited high conductivity (354â¯S/m), robust mechanical strength and stretching-releasing dynamic durability. Especially, its textile sensors still possessed high sensitivity and excellent sensing performance after repeated washing and friction. Moreover, NFACP0.2 biosensor can be designed into various multifunctional health monitoring and security warning systems for "stress reducing exercise" enthusiasts, high-altitude activities, and deep-sea exploration, demonstating great potentials of conductive nylon fiber biosensor in flexible electronics.
RESUMO
The wearable composite hydrogel sensors with high stretchability have attracted much attention in recent years, while the traditional hydrogels have weak molecular (chain) interaction and contain a lot of free water, leading to poor mechanical properties, unstable environmental tolerance and sensing ability. Herein, a novel ice crystal extrusion-crosslinking strategy is used to obtain polyvinyl alcohol (PVA) hydrogel with conductive nanocellulose-poly (3,4-ethylenedioxythiophene) (CNC-PEDOT) as skeleton network, sodium alginate (SA) and Ca2+ as tough segment of multi-bonding network. This strategy synergistically enhanced the interaction of hydrogen bonds and calcium (Ca2+) ion chelation within the hydrogel, building highly sensitive and stable multiple tough-elastic networks. Therefore, the optimal hydrogel sensor (PVA/SA-CP45) shows good structural stability, robust mechanical performance, excellent compress (Sensitivity = 68.7), stretching sensitivity (Gauge factor = 4.16), ultra-wide application range (-105-60 °C), fast response/relaxation time and outstanding dynamic durability with 6000 stretching-releasing cycles. Especially, it can give good sensing performance for omnidirectional monitoring of human motion and weak signals. Moreover, it was also designed into multifunctional sensing systems for gait guidance of model training and real-time monitoring ammonia gas for food preservation and public environmental safety, demonstrating great potential in flexible sensors devices for health monitoring.
RESUMO
Although bioplastics and paper straws have been introduced as alternatives to single-use plastic straws, their potential environmental, economic, and social impacts have not been analyzed. This study addresses this gap by designing a polylactic acid layer interface adhesion on cellulose paper-based (PLA-P) composite straws by a dip molding process. This process is simple, efficient, and scalable for massive production. Optimizing key manufacturing parameters, including ice bath ultrasonic, overlapping paper strips (2 strips), winding angle (60°), soaking time (5 min), and drying temperature (50 °C), were systematically evaluated to improve straw quality and manufacturing efficiency. PLA chains were found to deposit onto the cellulose network through intermolecular interactions to form a consistent "sandwich" structure, which can improve adhesion, water resistance, and mechanical properties. Interestingly, PLA-P straws effectively decomposed in soil and compost environments, with a 35-40 % degradation rate within 4 months. Besides, PLA-P straw residues affected seed germination and plant growth, but no significant toxic effects were detected. Further, microplastics were observed in soil and plant tissues (roots, stems, and leaves), and their possible diffusion mechanisms were explored. The results of a comprehensive life cycle assessment (LCA) and cost analysis showed that the process improvements reduced the ecological footprint of PLA-P straws and showed good prospects for commercial application. The study's findings contribute to the understanding of bioplastics and paper straws in effectively reducing environmental impact and fostering sustainable development.
RESUMO
Hydrogels with excellent high-water uptake and flexibility have great potential for wound dressing. However, pure hydrogels without fiber skeleton faced poor water retention, weak fatigue resistance, and mechanical strength to hinder the development of the dressing as next-generation functional dressings. We prepared an ultrafast gelation (6 s) Fe3+/TA-CNC hydrogel (CTFG hydrogel) based on a self-catalytic system and bilayer self-assembled composites. The CTFG hydrogel has excellent flexibility (800% of strain), fatigue resistance (support 60% compression cycles), antibacterial, and self-adhesive properties (no residue or allergy after peeling off the skin). CTFG@S bilayer composites were formed after electrospun silk fibroin (SF) membranes were prepared and adhesive with CTFG hydrogels. The CTFG@S bilayer composites had significant UV-shielding (99.95%), tensile strain (210.9 KPa), and sensitive humidity-sensing properties. Moreover, the integrated structure improved the mechanical properties of electrospun SF membranes. This study would provide a promising strategy for rapidly preparing multifunctional hydrogels for wound dressing.
Assuntos
Celulose , Fibroínas , Polifenóis , Cimentos de Resina , Bandagens , Antibacterianos/farmacologia , Hidrogéis , ÁguaRESUMO
In the search for new efficacious antibiotics, biosynthetic engineering offers attractive opportunities to introduce minor alterations to antibiotic structures that may overcome resistance. Dbv29, a flavin-containing oxidase, catalyzes the four-electron oxidation of a vancomycin-like glycopeptide to yield A40926. Structural and biochemical examination of Dbv29 now provides insights into residues that govern flavinylation and activity, protein conformation and reaction mechanism. In particular, the serendipitous discovery of a reaction intermediate in the crystal structure led us to identify an unexpected opportunity to intercept the normal enzyme mechanism at two different points to create new teicoplanin analogs. Using this method, we synthesized families of antibiotic analogs with amidated and aminated lipid chains, some of which showed marked potency and efficacy against multidrug resistant pathogens. This method offers a new strategy for the development of chemical diversity to combat antibacterial resistance.